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 KEY MESSAGES AND POLICY RECOMMENDATIONS  

The goal of this Task is to design, integrate, control, and optimize energy storage systems (ESS) across 
various scales, from buildings to power grids. This involves developing methods, optimization, and 
advanced control strategies to predict, evaluate, and improve ESS performance. This comprehensive 
review includes six subtasks, each providing essential insights for effective ESS deployment. 

 

 Key Messages 

Task 37 of the IEA Energy Storage Technology Collaboration Programme (ES TCP) was established to 

deliver practical methods and tools for the smart design and control of energy storage systems (ESS), 

ranging from buildings to grid-level integration. The ultimate goal is to enable widespread, efficient 

deployment of ESS that improves energy system resilience, reduces operational costs, enhances 

integration of renewables, and supports decarbonization objectives. 

This Task has produced a coordinated body of research, frameworks, and case studies that together 

offer new insights and actionable strategies for both technical stakeholders and policymakers. 

Outputs include a suite of design methodologies, performance benchmarking tools, control 

strategies, and modeling approaches—many of which leverage advanced technologies such as AI, 

IoT, and data-driven analytics. These outputs are intended for engineers, researchers, building 

designers, energy system operators, and policy advisors, and will be disseminated through this final 

report, peer-reviewed publications, and future annexes or collaborative projects within the ES TCP 

network. 

The key achievements and new contributions of Task 37 are summarized below: 

1. Smart Data Analytics and IT Integration (Subtask 0) 

What’s new: Developed a classification of predictive analytics specific to ESS, and established 

frameworks for integrating IoT, BMS, and BIM to support smarter control and lifecycle management. 

Expected benefits: Improved system efficiency, more reliable performance predictions, and 

extended lifetime of ESS through enhanced monitoring and control. 

2. Forecasting Models for Control (Subtask A) 

What’s new: Introduced cost-effective Direct Multi-Step (DMS) forecasting models that match more 

complex alternatives and demonstrated the practical application of Transfer Learning for ESS control. 

Expected benefits: Reduced data collection costs and improved forecasting accuracy for operational 

decisions, leading to better grid integration and energy savings. 

3. Machine Learning for ESS Modeling (Subtask B) 

What’s new: Highlighted the untapped potential of advanced machine learning—particularly 

Artificial Neural Networks—in modeling complex, nonlinear ESS behavior, including underexplored 

technologies like sorption storage. 

Expected benefits: Faster, more flexible modeling for system designers and control engineers, 

supporting real-time diagnostics and adaptive control strategies. 
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4. Smart Design Methodology (Subtask C) 

What’s new: Delivered a comprehensive seven-step methodology for designing thermal energy 

storage (TES) systems, validated through multiple international case studies. 

Expected benefits: Improved alignment between system design and application needs, resulting in 

optimized energy use and better return on investment. 

5. AI-Based Control Systems (Subtask D) 

What’s new: Demonstrated the effectiveness of AI-driven predictive control systems in real-world 

settings, enhancing system responsiveness and user comfort during power disruptions. 

Expected benefits: Higher system reliability, lower carbon footprints, and improved energy resilience 

in buildings and districts. 

6. Cooperative Control at District/Grid Scale (Subtask E) 

What’s new: Provided a detailed typology of ESS control architectures and identified strategies for 

stabilizing microgrids and enhancing real-time grid responsiveness. 

Expected benefits: Better integration of distributed storage, improved grid stability, and reduced 

vulnerability to outages or supply-demand imbalances. 

Policy Recommendations 

In light of the findings from Task 37, several policy directions are recommended to support the 

effective deployment of smart energy storage systems across buildings, districts, and power grids. 

These recommendations aim to inform policymakers on enabling frameworks that can foster 

innovation, improve resilience, and advance energy sustainability. 

To begin with, the integration of digital technologies—such as the Internet of Things (IoT), Artificial 

Intelligence (AI), and Building Information Modeling (BIM)—into energy storage systems should be a 

key focus of energy policy. Public investment and regulatory support can help accelerate the 

deployment of these technologies, ensuring better management, monitoring, and control of energy 

systems. 

Furthermore, policymakers are encouraged to support data-sharing initiatives and the development 

of standardized frameworks that facilitate interoperability among energy systems. Such efforts will 

enhance forecasting and operational control, particularly when existing data and models can be 

reused through techniques like Transfer Learning. Reducing barriers to data access will enable 

broader use of forecasting tools that can optimize energy storage performance while minimizing 

implementation costs. 

In the area of system design, policy should promote adaptive approaches that consider the diversity 

of buildings and energy infrastructures. Incentives for customized, application-specific design—

especially in retrofitting existing buildings—can lead to more efficient and resilient energy systems. 

Supporting pilot projects and demonstration cases of advanced thermal energy storage (TES) design 

methods can serve as valuable benchmarks for wider adoption. 

To optimize the operation of energy storage, investment in AI-based control systems should be 

encouraged. These systems are critical in increasing energy resilience, especially in the face of 
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growing disruptions linked to climate change and energy demand fluctuations. Policymakers can play 

a crucial role by supporting research, establishing guidelines, and creating market incentives for 

resilient energy infrastructure that integrates smart storage solutions. 

Lastly, as power grids evolve into more dynamic and decentralized systems, real-time control, 

protection mechanisms, and cybersecurity become essential. Policymakers should prioritize the 

development and deployment of quick protection devices and smart grid technologies, which are 

instrumental for ensuring stability and preventing system vulnerabilities. Cross-sector 

collaboration—between government, academia, and industry—will be key to realizing these 

advancements. 

By adopting these policy directions, governments can help unlock the full potential of energy storage 

technologies, advancing climate goals, energy equity, and long-term system reliability. 
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General Recommendations for Deployment 

1. Invest in Advanced Technologies: 

Prioritize IoT, AI, and ML integration in ESS for enhanced performance. 

2. Customize Solutions: 

Tailor methodologies and models to specific applications and buildings. 

3. Enhance Resilience and Stability: 

Focus on predictive and real-time control systems for improved resilience. 

4. Collaborate and Share Data: 

Use Transfer Learning and collaborative approaches to minimize costs and leverage existing 
knowledge. 

By implementing these recommendations, stakeholders can effectively design, optimize, and control 
energy storage systems, leading to more sustainable and efficient energy management across various 
scales. 

 

. 
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 MAIN RESULTS IN A NUTSHELL  

The general objective of this task is to address the design, integration, control, and optimization of 
energy storage systems (ESS) within buildings, districts, power grids, and local utilities. The focus is on 
developing advanced design methods, optimization techniques, and control strategies to effectively 
predict, evaluate, and improve the performance of buildings and districts when energy storage is 
available. This task consists of six subtasks, each providing critical insights for the deployment of energy 
storage solutions. Here are the main results and conclusions for each subtask. 

1. Data Analytics and Information Technologies for Smart Energy Storage 

• Critical Role of ESS: ESS are crucial for efficient energy management, involving complex variables 

that require accurate state and trend estimation for optimal operation and control. 

• Integration with IoT: IoT technologies play a key role in integrating distributed energy storage (DES) 

systems, helping balance renewable energy supply and demand through effective design and 

operation. 

• Importance of BMS and BIM: Building Management Systems (BMS) and Building Information 

Modeling (BIM) are essential for smart design and control features in ESS, enhancing efficiency 

and performance. 

2. Forecasting for Control of Smart Energy Storage Systems 

• Efficiency of DMS Models: Simple neural Direct Multi-Step (DMS) models perform similarly to 

complex Machine Learning (ML) models but with lower computational costs. 

• Transfer Learning Benefits: Data collection requirements for new control systems can be 

minimized by reusing measurement data and trained models from existing buildings. 

• Forecasting Challenges: Forecasting grid electricity price and carbon intensity is generally easier 

than predicting building electrical load, which varies in difficulty across different buildings. 

• Data vs. Accuracy Trade-off: There is a trade-off between using less data (reducing costs) and 

achieving better prediction accuracy (reducing operational costs). Finding the optimal balance is 

crucial. 

3. Data-driven Modelling of Energy Storage Devices using Machine Learning 

• Underutilization of ML Potential: Current energy storage modeling often underutilizes the 

potential of modern ML. 

• Focus on Sorption Technologies: Few studies focus on physical and chemical sorption, which 

requires precise control and has significant potential. 

• Advantages of ANN: Artificial Neural Networks (ANN) handle highly non-linear problems better 

than traditional white-box approaches, which often lead to stiff differential equations. 

• Applications Beyond Predictive Modeling: ML can be used for real-time learning, anomaly 

detection, and data mining, expanding its applications beyond predictive modeling. 
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4. Smart Design/Integration Methodology for Energy Storage Systems 

• Seven-Step Design Methodology: A proposed seven-step design methodology can guide the 

process from describing the thermal process to defining TES geometry based on thermal 

application requirements and constraints. 

• Discrepancies in Design Parameters: There is a discrepancy between design cases regarding input 

parameters to the proposed design methodology. 

• Application Type Consideration: Including the type of application (retrofit or new construction) as 

a decisive factor in the design methodology is recommended for better alignment with specific 

needs. 

• Need for More Applications: Additional applications are needed to validate and refine the design 

methodology. 

5. Advanced Storage Control Applied to Optimize Operation of Energy Storage Systems 

• Predictive Capabilities of AI: AI-based control systems can predict important factors like energy 

storage performance, weather conditions, and demand, optimizing energy storage for 

environmental and economic benefits while maintaining system stability. 

• Enhanced Resilience: AI-based control improves building and district resilience during disruptions, 

adjusting energy use to maintain comfort and minimize the impact of power outages. 

• Transformative Potential: Energy storage technology, combined with AI-based control, offers a 

transformative approach to sustainable energy management, significantly enhancing efficiency 

and reliability. 

6. Cooperative Control of Building/District/Grid 

• Challenges with Renewable Energy: Renewable energy sources are unpredictable, and energy 

demand varies, necessitating a consideration of costs and constraints for optimization. 

• Microgrid Stability: Developing quick protection devices for stable microgrid operation during 

isolated events is a significant challenge that needs addressing. 

• Real-time Control Needs: As power grids evolve into smarter systems, real-time control, mitigation, 

and protection become crucial. 

• Vulnerability Prevention: Detecting and preventing vulnerabilities is essential to avoid financial 

and proprietary losses, ensuring the security and stability of energy systems. 
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Summary Recommendations 

• Invest in IoT and AI Technologies: Enhance the integration and control of ESS by leveraging IoT and 

AI technologies. 

• Tailor Solutions: Customize design methodologies and forecasting models to specific building 

characteristics and application types. 

• Enhance Resilience: Focus on predictive and real-time control systems to improve system 

resilience and stability. 

• Utilize Transfer Learning: Apply Transfer Learning to reduce setup costs and leverage existing data 

and models. 

By implementing these strategies, stakeholders can optimize the design, control, and performance of 
energy storage systems, contributing to more sustainable and efficient energy management across 
various scales. 
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 EXECUTIVE SUMMARY  

1 Short Description of Task 37  

1.1 Objectives and Scope 

The general objective of this Task is to address the design/integration, control, and optimization of 
energy storage systems within buildings, districts, power grids, and/or local utilities. The focus will be 
on the development of design methods, optimization, and advanced control strategies for effectively 
predicting, evaluating, and improving the performance of Buildings and districts when energy storage 
is available. The Task shall deal with the fundamental of smart technology and its application to energy 
storage systems in buildings, districts, and grids. 

1.2 Organisational Structure 

Project group managed by the Task Leader Ryozo Ooka. 

Participating countries: Japan, Canada, UK, France, Denmark, Italy, Korea, China, Sweden, US, Norway, 
Turkey, Israel and Ireland. 

The Task Leader reports to the ExCo of the TCP on a regular basis. 

1.3 Beginning and End of Task 

Start: May 2020. End of Task: June 2024. 

1.4 Experts Meetings 

City Country Date # Participants 

Online  12 June 2020 39 

Online - 10 July 2020 44 

Online  14 August 2020 35 

Online  25 September 2020 35 

Online  26 October 2020 30 

Online  27 May 2021 35 

Online  22 October 2021 32 

Online  6 May 2022 25 

London UK 18 October 2022 21 

Tokyo Japan 18 May 2023 23 

Turin Italy 27 October 2023 21 

Lyon France 1 June 2024 12 
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2 Summary of Subtasks 

2.1 Subtask 0 

This sub-task is mandated to investigate the state-of-the art smart tools and technologies to support 
integration, optimization, control and coordination of energy storage systems at/with various 
integration scales (building, district, and community), various operational & control scenarios (real-
time vs predictive), various technologies (batteries, thermal storage, CAES, etc.), and various objectives 
(cost efficiency, resilience & self-reliance, renewables penetration, etc.). 

This report provides a state-of-the-art review on emerging applications of smart tools such as data 
analytics and smart technologies such as Internet-of-things (IoT) in case of design, management and 
control of energy storage systems. In particular, we have established a classification of the types and 
targets of various predictive analytics for estimation of load, energy prices, renewable energy inputs, 
state of the charge, fault diagnosis, etc. In addition, the applications of information technologies, in 
particular, use of cloud, IoT systems, building management systems (BMS) and building information 
modeling (BIM) and their contributions to management of energy storage systems will be reviewed in 
detail. The paper concludes by highlighting the emerging issues in smart energy storage systems and 
providing directions for future research. 

2.2 Subtask A 

The prediction of energy demand in buildings and districts is a constraint that must be satisfied in 
control. Especially, the energy demand of buildings and districts varies significantly depending on the 
usage, composition of the energy system, change of weather, occupant behavior, and so on. There are 
many demand prediction models are previously proposed including IEA’s achievement. This particular 
Annex will focus on prediction models that support smart control and operation of energy storage 
technologies. 

This sub-task investigates the role of data in enabling high accuracy forecasting for smart energy 
storage systems by studying the performance of various prediction models in providing forecasts for a 
Linear MPC controller that operates batteries within a multi-building energy system simulation. 
Specifically, it examines the capability of different Machine Learning models to forecast electricity 
demand, grid electricity cost, and carbon emissions, considering how different aspects of the 
supporting data impact prediction performance and the implications for the joint design of forecasting 
models and data collection strategies. 

2.3 Subtask B 

The objective of subtask B is to analyze the numerical models developed at the component scale for 
optimization, design and control of energy storage systems integrated in buildings and districts. In 
order to carry out such analysis, a comprehensive and up-to-date set of information is mandatory. It 
was therefore decided to build a database gathering as much information as possible on recent or 
ongoing research works on energy storage systems, including (at least some) modeling attempts. 

Research on the optimal use of energy storage systems includes approaches like Rule-based Control 
(RBC), Model Predictive Control (MPC), and Adaptive Control (AC), all of which rely on accurate and 
fast system models. Creating equation-based (white-box) models can be time-consuming and require 
engineering services, particularly when systems change. Grey-box modelling, which uses simple 
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mathematical equations calibrated with data, and black-box modelling, which relies purely on data-
driven methods, offer alternatives. With the rise of data availability, computing power, and machine 
learning algorithms, black-box modelling has gained significance. In this report, this sub-task is 
reviewing the existing literature on data-driven modelling of energy storage devices for buildings in 
Subtask B. 

 

2.4 Subtask C 

Recent research studies have focused on the optimal design of Thermal Energy Storage (TES) systems 
for different plants and processes, utilizing advanced optimization techniques. There are a wide range 
of TES technologies that can be integrated into a variety of thermal applications. Each TES technology 
has its own technical and economic characteristics that make it essentially suitable for a specific 
application. Identifying important factors and then matching an application with the most appropriate 
TES system is still a challenging issue. Subtask C discusses the challenges in identifying the most 
appropriate Thermal Energy Storage (TES) system for a specific application due to the technical and 
economic characteristics of each TES technology. A seven-step design methodology is proposed that 
can guide the process from describing the thermal process to defining the TES geometry based on the 
requirements and constraints of the thermal application. The steps in the proposed methodology 
include specifying the thermal process, thermal demand, storage technology, integration parameters, 
key performance indicators, optimization method, and optimization tools. The proposed methodology 
is implemented in seven different case studies to demonstrate its effectiveness in identifying the most 
appropriate TES system for a specific application. Although the case studies involve various types of 
applications with both sensible and latent thermal energy storage systems, the proposed design 
procedure is applicable. The design steps proposed in this subtask can serve as a foundation for 
developing a systematic approach for designing TES systems in future works. 

2.5 Subtask D 

Subtask D is intended to provide the latest findings on the smart control and operation strategies of 
energy storages into buildings and districts. Within the complex multi-source multi-energy systems 
that are exploited to ensure a full decarbonization of the building sector, the strategies used to control 
such storages may not be straightforward, as they should be set considering a large number of 
variables and uncertain inputs so that a multiple number of interrelated outputs are optimized. 

In this subtask, the identification and review of recent studies concerning the control of energy storage 
integrated in systems for buildings, or group of buildings is performed. In particular, the report 
concentrates on papers that are not only purely theoretical or numerical studies, but where some 
experimental activities were carried out or where analysis are conducted based on real case-studies. 
This is particularly important in order to evaluate the effectiveness of the control strategies against 
real measurements. Thus, a systematic review process was implemented aimed at identifying the 
latest advancements in energy storage control, the emerging trends and the role of AI in shaping such 
trends, and future perspectives. 

2.6 Subtask E 

The main objective of this subtask is to represent all system components (in terms of their electrical 
or energetic inputs and outputs, efficiencies, technical constraints, static and dynamic behavior, costs, 
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emissions) and propose optimal control and operation methods in power grid systems.  

This subtask presents a comprehensive review of the existing studies regarding ESS in power 
distribution networks. The contributions of this work can be summarized as follows: 

• This subtask discusses various issues related to the power quality of distribution networks and 

their mitigation scopes with ESSs. In detail, we present a systematic review of ESS studies 

published in journals or conference proceedings providing a comprehensive review of ESS 

integration in power distribution networks. 

• We approach the review of relevant ESS papers through multiple angles, including technological, 

design, and optimization aspects. Additionally, we provide a detailed classification of the papers 

based on various criteria, such as the type of ESS used, the control strategy employed, and the 

application area. Our review categorizes the control architectures for ESSs and explains the 

advantages and challenges of developing practical operational strategies and solution techniques 

for different ESS applications. 

• Differently from most of the recalled reviews, we show all the possible applications of ESS in power 

distribution grids such as frequency regulation, grid stability, voltage regulation, and ancillary 

services. Through the review, we identify the existing gaps in the literature and provide promising 

research directions to fill these gaps. We also highlight the correlation between articles 

considering all the possible ESS applications, recent advancements in storage technologies, and 

relevant control approaches available in the literature. 

 

3 Interrelationships between Subtasks and their 
Contribution to the Overall Task 

 

Each subtask of Task 37 is interconnected, collectively building a comprehensive framework for the 
smart design and control of energy storage systems. Figure 1 shows the interrelationship between 
subtasks. Subtask 0 establishes the foundation by exploring smart tools and data analytics 
technologies essential for predictive management. Building on this, Subtask A focuses on forecasting 
energy demand and supply—critical for enabling real-time control strategies envisioned in Subtask 0. 
Subtask B then leverages these forecasts by applying machine learning to develop component-level 
models that inform design and operational decisions. These models support Subtask C, which 
proposes a structured methodology to optimally design energy storage systems for specific building 
and district contexts. The design outputs feed directly into Subtask D, where advanced control 
strategies — especially AI-based systems—are developed to manage energy systems under real-
world uncertainties. Finally, Subtask E scales these concepts to the grid level, addressing 
coordination across buildings, districts, and power grids. Together, these subtasks form a layered and 
interdependent approach that enables holistic optimization and integration of energy storage across 
all levels of the energy system. 
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Figure 1 Interrelationship between subtasks 
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4 Comprehensive Results and Recommendations for 
Deployment 

The primary goal of this Task is to address the design, integration, control, and optimization of energy 
storage systems within various scales, from buildings to power grids. The focus is on developing 
methods, optimization, and advanced control strategies to predict, evaluate, and improve the 
performance of energy storage systems in these contexts. This comprehensive review consists of six 
subtasks, each providing insights and conclusions essential for deploying effective energy storage 
solutions. Below is a summary of findings and recommendations for each subtask. 

1. Data Analytics and Information Technologies for Smart Energy Storage 

Main Conclusions: 

• Energy Storage Systems (ESS) are critical for efficient energy management, requiring accurate state 

and trend estimation for optimal operation and control. 

• IoT technologies are vital for integrating distributed energy storage (DES) systems, balancing 

renewable energy supply and demand. 

• Building Management Systems (BMS) and Building Information Modeling (BIM) are essential for 

the smart design and control of ESS. 

Recommendations: 

• Invest in IoT technologies to enhance DES integration and operation. 

• Implement BMS and BIM in the design and control phases of ESS to maximize efficiency and 

performance. 

2. Forecasting for Control of Smart Energy Storage Systems 

Main Conclusions: 

• Simple neural Direct Multi-Step (DMS) models perform comparably to complex ML models with 

lower computational costs and better data efficiency. 

• Transfer Learning minimizes data collection requirements by reusing data and trained models from 

existing buildings. 

• Forecasting grid electricity price and carbon intensity is generally easier than predicting building 

electrical load, though the difficulty varies by building. 

Recommendations: 

• Use DMS models for efficient forecasting in ESS control systems. 

• Apply Transfer Learning to leverage existing data and models, reducing setup costs. 

• Tailor forecasting models to specific building characteristics for improved accuracy. 
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3. Data-driven Modelling of Energy Storage Devices using Machine Learning 

Main Conclusions: 

• Current energy storage modeling underutilizes modern ML potential. 

• Few studies focus on physical and chemical sorption, despite its promise and need for precise 

control. 

• ANN can handle highly non-linear problems, offering advantages over traditional white-box 

approaches. 

Recommendations: 

• Expand research on physical and chemical sorption technologies. 

• Utilize ANN for modeling complex, non-linear energy storage systems. 

• Match ML algorithms to specific system characteristics for better modeling accuracy. 

4. Smart Design/Integration Methodology for Energy Storage Systems 

Main Conclusions: 

• The seven-step design methodology applies to various TES systems across different buildings. 

• Input parameters vary significantly between design cases. 

• The type of application (retrofit or new construction) should be a decisive factor in the design 

process. 

Recommendations: 

• Adopt the seven-step methodology for designing TES systems. 

• Customize input parameters based on specific project requirements. 

• Consider application type in the design phase to ensure optimal integration and performance. 

5. Advanced Storage Control Applied to Optimize Operation of Energy Storage Systems 

Main Conclusions: 

• AI-based control systems can predict and optimize energy storage performance, weather 

conditions, and demand. 

• These systems enhance resilience during disruptions, maintaining comfort and minimizing outage 

impacts. 

• AI-based control and energy storage technology offer significant benefits for sustainable energy 

management. 

Recommendations: 

• Implement AI-based control systems to optimize energy storage operations. 

• Focus on resilience improvements through predictive control strategies. 

• Leverage AI to enhance both environmental and economic outcomes. 
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6. Cooperative Control of Building/District/Grid 

Main Conclusions: 

• Renewable energy sources are unpredictable, and energy demand varies, requiring cost and 

constraint consideration for optimization. 

• Quick protection devices for stable microgrid operation during isolated events are necessary. 

• Real-time control, mitigation, and protection are crucial as power grids evolve. 

• Preventing vulnerabilities is essential to avoid financial and proprietary losses. 

Recommendations: 

• Develop and deploy quick protection devices for microgrid stability. 

• Invest in real-time control and protection systems for smart grids. 

• Enhance vulnerability detection and prevention mechanisms to safeguard energy systems. 

General Recommendations for Deployment 

• Invest in Advanced Technologies: Prioritize the integration of IoT, AI, and ML in ESS to enhance 

performance and control. 

• Customize Solutions: Tailor methodologies and models to specific applications and building 

characteristics for optimal results. 

• Enhance Resilience and Stability: Focus on predictive and real-time control systems to improve 

system resilience and stability. 

• Collaborate and Share Data: Utilize Transfer Learning and collaborative approaches to minimize 

costs and leverage existing knowledge. 

By implementing these recommendations, stakeholders can effectively design, optimize, and control 
energy storage systems, contributing to more sustainable and efficient energy management across 
various scales. 
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 FINAL REPORT 

1 Objectives, Structure, and Approach of Task 

 

1.1 Objectives 

The final objective of this Annex is to address the design/integration, control, and optimization of 
energy storage systems with buildings, districts, and/or local utilities. In order to realize optimal control, 
the constraints must be properly predicted, and the system must first be optimally designed. For 
designing the system more optimally, it is necessary to properly understand the performance of the 
components. Therefore, the focus here is to model components, develop design methods and 
advanced control strategies for effectively predicting, evaluating, and improving the performance of 
Buildings and districts when energy storage is available. 

 

■ Establishment of prediction method 

In order to properly design and control the system, it is necessary to predict various conditions. For 
example, the prediction of renewable energy production and the prediction of electricity price change 
are boundary conditions for appropriate control. The prediction of energy demand in buildings and 
districts is a constraint that must be satisfied in control. Especially, the energy demand of buildings and 
districts varies significantly depending on the usage, composition of the energy system, change of 
weather, occupant behavior, and so on. There are many demand prediction models are previously 
proposed including IEA’s achievement. In this Annex, we will summarize those findings and examine 
the establishment of prediction methods that contribute to smart design and control. 

 

■ Establishment of modeling method of component and system 

To optimally design and control different energy systems depending on the building, it is necessary to 
construct a prediction model that reproduces system behavior. Specifically, performance prediction 
models of the system and its components such as heat pumps, pumps, and energy storage devices are 
required. Various components and systems have already been modeled in the previous IEA Annexes. 
However, in order to use it for actual real-time control, it is necessary to predict fast and accurately. 
In addition, it is necessary to reproduce the deterioration over time the change in performance of the 
component. The recent development of artificial intelligence enables them to be realized. 

 

■ Establishment of optimization method for design and control 

Optimization technologies are very useful to both design and control. The design act is to determine a 
specification that maximizes the functionality to achieve a certain purpose under limitation of 
resources. In addition, when there are multiple objectives and they are in a trade-off relationship with 
each other, finding a compromise between them is also a design act. In order to minimize costs or 
fossil energy consumption or maximize human comfort, how to arrange various devices including heat 
storage devices is a major design issue. On the other hand, control/operation is to decide which devices, 
when and how we should activate for a certain purpose. These are both optimization problems. 
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Previously, the system was simple, so these problems could be handled by human designers and 
operators. Today, however, the system has become more and more sophisticated and complex, it is 
almost impossible to handle these problems with human abilities. Again here, artificial intelligence is 
a very useful tool. Conventionally, many optimization methods based on mathematical programming 
such as linear programming have been proposed. Recently, optimization methods based on 
metaheuristics and deep-Q learning have attracted attention as highly generic methods. Therefore, 
investigation of an optimization method that can efficiently solve such difficult optimization problem 
is important from the viewpoint of realization of optimum design and control. This Annex deals with 
the following subjects. 

• Classification of optimization methods (mathematical programming, metaheuristics, deep-Q 

learning)  

• Strong and weak points of different optimization methods: in terms of search efficiency and 

stability  

• Setting of objective function for optimal control problems 

 

1.2 Scope 

Smart Design and Control of Energy Storage Systems are essential for energy efficiency in buildings 
and district. They pose several challenges. . These challenges arise from the complex nature of energy 
storage technologies, diverse applications, and the evolving energy landscape. Here are some key 
challenges in developing smart design and control for energy storage systems: 

 

1. Diversity of Energy Storage Technologies: 

 There are various energy storage technologies, such as Thermal Energy System, Chemical Energy 
System, Electrical Energy System, Mechanical Energy System, and more. Each technology has unique 
characteristics, performance metrics, and operational requirements. Developing a universal smart 
design and control system that accommodates this diversity is challenging. 

 

2. Optimal Sizing and Integration: 

Determining the optimal size of an energy storage system for a specific application is crucial. The 
system needs to be sized to meet the energy demand while considering factors like cost, available 
space, and technology limitations. Integrating the energy storage system seamlessly into existing 
energy infrastructure is also a challenge. 

 

3. Dynamic Nature of Energy Systems: 

Energy systems are dynamic and influenced by various factors, including weather conditions, energy 
demand fluctuations, and the intermittent nature of renewable energy sources. Designing control 
systems that can adapt to these dynamic conditions and optimize energy storage usage accordingly is 
a significant challenge. 
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4. Lifecycle Management and Aging Effects: 

Energy storage systems undergo degradation over time due to factors like charge-discharge cycles, 
temperature variations, and other environmental conditions. Developing control systems that can 
monitor and manage the lifecycle of energy storage systems, including predictive maintenance 
strategies, is essential to ensure long-term reliability. 

 

5. Grid Integration and Regulatory Challenges: 

Integrating energy storage systems into existing power grids involves addressing regulatory hurdles 
and compliance issues. Different regions may have varying standards and regulations governing the 
deployment and operation of energy storage systems, making it challenging to develop universally 
applicable control systems. 

 

6. Economic Viability and Cost Considerations: 

Developing smart design and control systems that balance the economic viability of energy storage 
installations is crucial. This includes considering the initial costs, operation and maintenance expenses, 
and the potential revenue streams from services provided by the energy storage system. 

 

7. Interoperability: 

Ensuring interoperability between different components, technologies, and systems is a challenge. 
Standardization in communication protocols and control interfaces is essential for seamless 
integration into larger energy management systems. 

 

8. Technological Advancements and Innovation: 

The field of energy storage is rapidly evolving, with ongoing advancements in materials, designs, and 
technologies. Developing smart design and control systems that can adapt to and leverage these 
innovations is crucial for staying at the forefront of energy storage capabilities. 

 

Addressing these challenges requires collaboration among researchers, engineers, policymakers, and 
industry stakeholders to create effective and adaptive smart design and control systems for energy 
storage. 

 

1.3 Structure and Approach 

This task is composed of six sub-tasks, (i) Subtask 0: Smart Technologies and State of the Art, (ii) 
Subtask A:  Demand & Supply Prediction, (iii) Subtask B: Device/Component, (iv) Subtask C: Building 
and District Design, (v) Subtask D: Optimal Building and District Control /Operation, (vi) Subtask E: 
Optimal Grid Control/Operation/Cooperation. In addition to expert meetings attended by all members, 
each subtask carried out its activities independently. 
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1.4 Meetings and Participating Countries/TCPs 

The official start of the Annex/Task was 12 June. Table 1.1 gives an overview of the expert meetings in 
this Task 37. 

Table 1.1: Details about the date and location of each expert meeting. 

City Country Date # Participants 

Online - 12 June 2020 39 

Online - 10 July 2020 44 

Online - 14 August 2020 35 

Online - 25 September 2020 35 

Online - 26 October 2020 30 

Online - 27 May 2021 35 

Online - 22 October 2021 32 

Online - 6 May 2022 25 

London UK 18 October 2022 21 

Tokyo Japan 18 May 2023 23 

Turin Italy 27 October 2023 21 

Lyon France TBA TBA 
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2 Subtask 0 Data Analytics and Information Technologies 
for Smart Energy Storage 

Contributors: Fuzhan Nasiri , Ryozo Ooka, Fariborz Haghighat, Navid Shirzadi, Mariagrazia Dotoli, 
Raffaele Carli, Paolo Scarabaggio, Amirmohammad Behzadi, Samira Rahnama, Alireza Afshari, 
Frederic Kuznik, Enrico Fabrizio, Ruchi Choudhary, Sasan Sadrizadeh 

 

2.1 Introduction 

Demand for reliable electricity with constant voltage and frequency is increasing worldwide due to the 
economic growth, population rise, and considerable changes in quality of life. Demand could have 
significant variation at different times due to unexpected behavior of the users, at certain times, 
leading to its imbalance with electricity production [7]. Therefore, to ensure maintaining the balance 
between demand and supply, avoid economic losses, shortages, and damages caused by such 
instabilities of the latter, the use of energy storage systems has emerged as a solution. The importance 
of energy storage systems rises further when all or part of the energy source on the supply side comes 
from renewable resources. This is due to the high intermittent characteristic of renewable energies 
such as solar or winds [118]. 

Although there are several ways to classify the energy storage systems, based on storage duration or 
response time [26, 79], the most common method in categorizing ESS technologies identifies four main 
classes: mechanical, thermal, chemical, and electrical [100, 152] as presented in Figure 2.1.  

• Mechanical storage systems store the energy in two different forms, potential and kinetic [37]. 

Examples of potential energy storage are compressed energy storage (CAES) and pumped hydro, 

while flywheels could be also considered for storing kinetic energy.  

• The thermal energy storage systems are grouped based on their temperature mode; high and low 

temperatures [42]. An example of a low-temperature method used for electricity generation is 

cryogenic energy storage [135]. On the other hand, sensible or latent heat storages are two types 

of high-temperature energy storage [40]. 

• Chemical energy storage comprises regular batteries such as lithium-ion, lead-acid, and flow 

batteries (such as vanadium redox and metal-air batteries). There are other forms of chemical 

storage that are called electrochemical storages and thermochemical storages. Fuel cells such as 

proton exchange membrane fuel cells (PEMFC), molten carbonate fuel cells (MCFC), and solid 

oxide fuel cells (SOFC) are considered as other forms of electrochemical storage while solar 

hydrogen and solar ammonia are two examples of thermochemical storage. 

• Electrical energy storage consists of two main types of storage: electrostatic and magnetic. 

Capacitors and ultracapacitors are two main types of the electrostatic energy storage [38] while 

superconducting magnetic energy storage is an example of the magnetic method of storage [22]. 
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Figure 2.1 Different energy storage technologies. 

Energy storage systems are to play a vital role in integration of renewable energy systems with direct 
impact on the cost, reliability, and resilience of energy supply. This role is even more magnified in 
distributed generation systems where buildings act as prosumers. Storage systems could reduce the 
operational cost (in comparison with energy supplied from the conventional grid), storing the low price 
energy during off-peak, and using it during peak, removing the indirect costs associated with power 
outages and saving money by participating in demand response programs. Acting as a backup in power 
outages situations and providing uninterrupted power can decrease the risk of power supply loss and 
increase the reliability of energy systems. Furthermore, adding an energy storage system could 
improve the system's ability to withstand the disturbances (in case of disruptions or shortages) and 
quickly return to a normal state [12]; therefore, it increases the system's resilience. 

In the light of the above benefits, it shall be mentioned that the high intermittent nature of renewable 
energies, while using energy storage, could still lead to operational safety and power quality issues 
[172]. One of the major solutions to deal with this issue is to ensure a data-driven (predictive) control 
of the energy storage systems by implementing artificial intelligence (AI) techniques to anticipate and 
incorporate the intermittency of renewable sources. AI could be implemented as a predictive tool for 
demand, supply, and storage stages. For example, the state of charge of the battery could be estimated 
using the reinforcement learning method [60], while the uncertainties related to the unexpected 
fluctuations of the load demand could be addressed by employing machine learning prediction 
techniques [118]. Moreover, AI could be used to predict wind speed and solar irradiance to diminish 
the supply side inaccuracies in establishing optimal control solutions [51, 131]. Furthermore, the 
recent development in Internet of Things (IoT), advancement of the digital twin concept, and cloud 
battery management have had a considerable impact on improving the storage systems' reliability, 
safety, and durability [68]. 

This chapter aims at providing a state-of-the-art review of smart energy storage concepts and its 
integration into energy management practices. In doing so, we will provide a review of the applications 
of AI and information technologies in establishing smart energy storage systems. The also articles 
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reviewed and cited in this chapter are to show the advantages and usefulness of adopting “smart” 
tools and technologies in management of energy storage systems. The remainder of the paper is 
classified into four main sections. Section 2 represents the data analytics and AI techniques used for 
storage energy management. Section 3 describes smart technologies such as IoT, building 
management systems (BMS), and building information modeling (BIM). Finally, a conclusion providing 
a summary of the article and suggestions for future research is discussed in section 4. 

 

2.2 Smart Energy Storage Systems: Data Analytics 

Energy storage systems (ESSs) are nowadays recognized as an important element that can improve the 
energy management of buildings, districts, and communities. Their use becomes essential when 
renewable energy sources (RESs) are involved due to the volatile nature of these sources. In order to 
design an accurate model of the system and to select effective control strategies for the ESSs 
deployment, accurate data analytics tools are necessary. Data analytics is the use of data and 
predictive techniques to estimate or predict future outcomes. Figure 2.2 shows a classification of data 
analytics applications in energy storage systems, which will be discussed in the following sections. 

 

Figure 2.2: Classification of data analytics for smart energy storage. 

 

 

2.2.1 Load, renewable energy, and energy price estimation 

The effective deployment of ESSs is mainly based on the operational control approaches. In fact, is 
crucial for an efficient management system to adjust the charging and discharging operation based on 
the estimated needs in order to maximize the performance, i.e., maximize the profits and minimize 
the operational costs, and prolong the predicted device's lifetime [5].  This should be selected in 
accordance with the expected energy demand, RESs energy production and energy price. These three 
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are usually referred together as energy forecasting. There are a large number of publications in this 
area that cannot be fully included in this work [48], however, we can divide the related works into 
probabilistic, data-based, ensemble and hierarchical approaches. Due to the inherent stochastic yet 
recurrent or cyclic nature of loads and RESs, the simplest approach is to analyse these patterns to 
define probability distribution to predict future behaviours [110]. In fact, probabilistic approaches are 
deeply used for load [39, 141, 142] and RES prediction [29, 110, 154] due to their straightforwardness. 
A more advanced class of forecasting tools are the data-based approaches that can generate reliable 
energy forecasting from a set of input parameters. The simplest methods are linear regression, 
multiple linear regression and polynomial regressions [21, 149]. Various advanced machine learning 
techniques such as artificial neural network ANN with different setups from single-layer network [59, 
138] to recurrent neural network (RNN) [64, 89, 116] deep neural network (DNN) [116, 132], 
reinforcement [157], and transfer learning networks. Combining forecasts has been widely recognized 
as one of the best practices in forecasting [90]. Hence, ensemble and hierarchical forecasting 
technique, which reconciles forecasts generated individually at different levels, are the most promising 
approaches for the energy forecasting [52, 53, 90, 127]. 

 

2.2.2 ESS state estimation 

Storage devices are complex systems with several variables whose state is most of the time unknown. 
Hence, accurate state estimation is necessary for effective control of the device. In particular, essential 
tasks are monitoring and estimating the status of the device and predicting the lifespan and remaining 
capacity. 

 

2.2.2.1 State of charge estimation 

For the management of ESSs, it is crucial the estimation of the state of charge (SOC), which is quantified 
by the ratio of the releasable capacity of an ESS over its rated capacity. There is large literature on SOC 
estimation that can be divided into look-up table, integral, Kalman filter and data-driven approaches 
[130]. The look-up table approach is the simplest one since it requires only a mapping between the 
ESS’s SOC and the characteristic parameters, such as the internal resistance [150], open-circuit voltage 
[33], or impedance [14, 160]. Nevertheless, these approaches can be used only for static analysis and 
cannot be used in real-time applications [49]. Another widely used approach is based on the integral 
counting approach of the current [65]. If this approach is used in an open-loop fashion it may lead to 
the accumulation of the prediction errors [130]. In order to define a better approach, the well-known 
Kalman filter can be adopted. In fact, when a model of the ESS is available the Kalman filter can be 
used to reconstruct its state. The literature presents a large number of contributions employing linear 
Kalman filters [65][134], extended Kalman filters [69, 92] and other Kalman filters [10, 20, 30, 56, 168]. 
A more recent and performant class of SOC estimation are the data-driven techniques. These 
approaches can estimate the SOC employing all the characteristics in a self-learning algorithm. The 
SOC estimation within the data-driven approaches is usually done with regression methods [50, 106]. 
Besides these approaches, ANN-based models are widely used for SOC estimation show high accuracy 
in the prediction [25, 126, 164]. (Deep-) Convolutional neural network and recurrent neural network 
RNN are used to estimate the ESS’s SOC based on complex feature datasets with time-series 
characteristics [115, 140, 153]. 
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2.2.2.2 State of health estimation and remaining useful lifetime prediction  

In order to quickly assess the health state of ESSs, several different indicators are available in the 
literature. Nevertheless, to forecast the health conditions and provide a tool for the replacement of a 
device the state of health (SOH) and the remaining useful lifetime (RUL) are widely used. However, the 
SOH and the RUL are not uniquely defined in the related literature [158]. Usually, the SOH is defined 
as the ratio of the original capacity of the device and the actual one [51], while the RUL is typically 
quantified by the time or cycling number when the capacity or SOH decreases to a threshold value [70]. 
Accurately predicting the SOH/RUL is critical to adjust its controlling strategy to ensure the 
performance, safety, and lifetime. Besides, accurate estimation and prediction, the RUL is vital in 
guiding device reuse or recycling. The estimation methodologies for the SOH/RUL estimation can be 
categorized into measurement-based, Kalman filter, and data-based approaches [109]. The 
measurement-based approaches aim to predict the SOH/RUL directly from specific measures. These 
approaches are the most straightforward; however, their accuracy is low. The inputs used in the 
lifetime prediction are various since they range from charging voltage curve, trend surface 
temperature (acquired from the infrared images), electrical information (incremental current/voltage 
data) [136, 163] and electrochemical impedance spectroscopy. As for the SOC estimation, the model-
based approaches employing the Kalman filter have in general better results [133, 148]. The latter 
category is based on machine learning methods applied to predict the SOH/RUL starting from a set of 
complex input features [123]. Regression algorithms are often used to estimate and predict SOH/RUL 
with their linear version [112], Gaussian processing regression [75] or with kernel-ANN regression 
algorithm [165]. Besides the regression approach, decision trees [168] and support vector machines 
(SVM) are used to predict SOH/RUL [76, 95, 162]. When handling dataset with complex time-series 
characteristics various ANN-based models are applied for SOH/RUL prediction [93, 126, 139], such as 
DNN [63, 121], RNN [153] and long short-term memory (LSTM) neural networks [81]. 

2.2.2.3 Fault and degradation analysis 

An important issue in the management of ESSs is the detection of defects, as well as the detection of 
abnormal behaviours, to ensure the future availability of the device. Most of the approaches used to 
detect anomalies are based on machine learning techniques since faults are usually the results of a 
series of complex interactions between different factors. Several machine learning algorithms are 
applied to classify the unbalance and damage of battery cells including logistic regression ANN, kernel-
SVM [33, 61] . Classical regression techniques such as the Gaussian process regression [78] and deep 
learning approaches are also gaining significant attention [70, 74, 151, 159]. In some applications, the 
input to the machine learning models is in the form of images, such as the snapshots of the battery 
electrode microstructure. Under this circumstance, CNN, which is highly capable of extracting the 
features of images, can be utilized [13, 128]. The estimation of the device’s degradation is a very 
complex issue since the cycle-based degradation depends on the charge/discharge sequence and on 
natural factors that contribute to the degradation such as ambient temperature, humidity, and storage 
technology. The degradation analysis aims to predict the future SOH/RUL based on the predicted 
operating conditions. In fact, a vital aspect of energy storage operation is to accurately model the 
operational cost, which for many devices mainly comes from the loss of energy capacities under 
repeated cycling [144]. Hence, predicting the impact of different charging/discharging processes on 
the ESS’s health state can be useful to select the best performing control inputs [161]. Several ESSs 
studies include degradation models either based on battery charging/discharging power or energy 
throughput [91]. These degradation models are convenient to be incorporated in existing optimization 
problems, at a cost of losing accuracy in quantifying the actual degradation cost. The capacity fading 
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can be properly described in terms of the fatigue process since mechanical stress plays a key role in 
the degradation of the device performances [144]. The similarities of the storage devices' degradation 
with the classical approach for the ageing of mechanical systems subject to fatigue cycle loading led 
many papers to select this as the most appropriate model for describing the performance deterioration 
[66, 117, 144]. The battery ageing process is fundamentally described by a set of partial differential 
and algebraic equations, however, they are in some sense too detailed and thus semi-empirical 
degradation models are often used. These approaches define a relation between cycle depth and 
battery degradation, and the loss of battery life is the accumulation of degradation from all cycles. To 
count these cycles several algorithms for cycle identification in material fatigue analysis as well as for 
battery degradation [88, 117] can be used. 

 

2.3 Smart Energy Storage Systems: Smart 
Technologies 

The integration of energy storage into energy systems could be facilitated through use of various smart 
technologies at the building, district, and communities scale. These technologies contribute to 
intelligent monitoring, operation and control of energy storage systems in line with supply and demand 
characteristics of energy systems: 

 

2.3.1 Internet of Things (IoT) and smart energy storage 

Internet of Things (IoT) addresses the needs of the energy sector to move forward towards a promoting 
efficient and sustainable use of natural resources. In order to achieve this, the concept of IoT proposes 
the development of a smart industrial platform enables to improve the efficiency and sustainability of 
system operations and to predictive maintenance by connecting cyber and physical systems. Therefore, 
IoT is the fundamental technology for realization of smart power and energy systems with energy 
storage. Such smart systems require bidirectional information exchange among different segments 
that can be provided with IoT-based technologies. IoT is not a single technology, but an interconnected 
network comprises of several technologies enabling communication of physical objects (Things) via 
the Internet in real time. The key elements of IoT technologies are, IoT devices embedded with IoT 
sensors and software for collecting real-time information, IoT networks and gateways for secure 
transmission of sensors data and an IoT management platform with several functions such as data 
storage management, data analytics and application enablement [94, 98]. In energy sector, the 
advancement of IoT technologies support a wide range of applications, along with Smart Grid concept, 
in power generation, transmission, distribution and consumption, including smart deployment of 
energy storage systems in buildings, districts and communities. 

 

2.3.1.1 Cloud computing and fog computing technologies  

The value of IoT is in the ability to process and analyse massive data streams in real time in order to 
make optimized informed decisions. This necessitates advanced data processing approaches, instead 
of storing and processing data only on local hard drives. Cloud computing and fog computing are the 
two well-accepted computing platforms for IoT applications [87]. Cloud computing platforms provide 
on-demand services including data storage, data processing and computation without owning the 
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hardware systems through the Internet. This allows access to heterogeneous data shared among 
different sectors anywhere and anytime, while reducing the costs of hardware and maintenance and 
enhancing the computational power and storage capacity. 

However, such a centralized computing approach cannot satisfy all IoT applications, particularly 
latency sensitive applications with widely geo-distributed IoT devices [101]. Fog computing is a 
distributed computing approach, which extends cloud computing to the edge of network. That can be 
using any IoT devices with storage and computing capabilities for data processing instead of sending 
the data to the Cloud. Figure 2.3 shows the Cloud and fog computing architecture for IoT applications. 

 

Figure 2.3: Cloud and fog computing architecture 

 

2.3.1.2 IoT-based energy storage systems 

In industrial energy sector, the use of IoT technologies enables renewable energy suppliers and utilities 
to efficiently design and operate their storage systems in order to tackle the intermittency of 
renewable resources hence, promoting the sustainability and stability of power grid. Relying on the 
IoT cyber-physical network technology, which provides a bank of information for optimized decision, 
an energy management platform comprising of two main layers; a ”core cloud” and the ”edge clouds” 
has been proposed in [41]. At edge clouds, microgrid aggregators solve optimization problems to 
determine the energy balance of each microgrid, whereas, at the core cloud, the distribution system 
operator solves an optimisation problem to meet the energy balance of the distribution grid with 
optimal scheduling of energy storage systems. Motivated by widespread use of lithium-ion (Li-ion) 
batteries as grid-level energy storage systems, a battery condition monitoring platform has been 
proposed in [62], which utilizes IoT devices and cloud components. The architecture consists of 
wireless module management systems incorporating IoT devices and a cloud battery management 
platform with cloud storage, analytics tools, battery algorithms, and visualization modules. Critical 
model parameters of the battery cells and battery conditions such as state of charge and state of health 
can be estimated with the proposed platform for the purpose of fault detection and predicting the 
remaining useful time of the battery cells.  

In domestic energy sector, IoT technologies are the main driver for integration of distributed energy 
storage (DES) systems, e.g. battery of electric vehicles (EVs), roof top photovoltaic panels and local 
solar thermal storage systems in energy systems leading to a more flexible and scalable power grid [3, 
17]. EVs as mobile distributed energy storage devices will become an integral part of Smart Grid and 
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smart buildings with vehicle-to-grid (V2G) and vehicle-to-home (V2H) technologies [8, 85]. This has led 
to extensive research studies focused on optimal planning for EVs charging/discharging. For instance, 
based on the distributed fog computing technology, three optimization algorithms have been 
proposed in [24], for an intelligent scheduling of EVs plugin. The system architecture consists of 
centralized cloud data centers and decentralized fog data centers for real-time information exchange, 
such as EVs requests for charging/discharging and energy prices. A new concept of DES system 
referring as cloud energy storage (CES) has been proposed in [75], which enables residential and small 
commercial consumers to rent a customized amount of energy storage from a so-called CES operator 
via the Internet, instead of using their own on-site energy storage systems. Different centralized 
energy storage technologies, such as flow batteries or compressed air energy storage can be provided 
as distributed energy services to the users, who aim to reduce their electricity bills considering volatile 
real-time energy prices by CES technology. 

 

2.3.1.3 Challenges of IoT technologies in smart energy systems 

Similar to other technologies, adoption of IoT technology presents both opportunities and challenges. 
There are several challenges have been discussed in the literature, for example in relation to network 
coverage and bandwidth, interoperability of the system components or data storage and security [58]. 
Particularly, with respect to the use of IoT in smart buildings and cities, there two major challenges: 

• IoT energy consumption: IoT technology comprises of numerous IoT devices that consume power. 

Therefore, It is important to have plugged-in IoT devices with low power consumption and remote 

IoT devices with long battery lifetime in order to make IoT solution affordable and sustainable for 

energy system applications. This has led to the emergence of green IoT technologies. A 

comprehensive review of the techniques and strategies for enabling green IoT technologies has 

been provided in [6]. Energy harvesting techniques, that is converting ambient energy sources such 

as ambient light into electrical energy, has been studied in the literature e.g. in [1] as a technique 

for prolonging the battery life time of the IoT devices. High energy consumption of cloud-based 

data centers is also a topic of research studies related to the IoT energy consumption. For instance, 

a multiobjective optimization problem has been formulated in [44] for integrated planning the 

capacity of internet data centers and the battery energy storage systems in a coupled smart grid 

and communication system. 

• IoT privacy: Application of IoT devices, especially in residential sector, increases the risk of privacy 

violations with sharing smart meters data that can be translated to behavioral patterns of smart 

building occupants [155]. There are several techniques have been discussed in the literature for 

preserving the privacy in IoT applications, such as data anonymisation which removes attribute 

information from the meter readings [102] or data obfuscation which distorts customer energy 

profile by integrating another energy source e.g. energy storage units at the customer premises 

[122]. 

 

2.3.2 Building Management Systems (BMS) and Smart Energy Storage 

The energy consumed in the building sector has recently grown considerably and hit a new record of 
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100% increase compared to 2010. According to the latest reports, 40% of global energy and 25% of 
total electricity demand is associated with buildings [18]. More than 84% of this energy is provided by 
fossil fuels leading to higher CO2 concentrations in the atmosphere and global temperature increment 
[171]. As a result, the need for the building management system (BMS) as a promising technique 
becomes necessary to address these challenges and makes a big step toward decarbonization [54]. By 
definition, BMS is a computer-based system providing a set of approaches to monitor and control the 
building's mechanical and electrical equipment. Examples of main operational subsystems monitored 
by the BMS are heating, ventilation, and air conditioning (HVAC) systems, energy storage units, lighting 
systems, power equipment, and fire systems [108]. The most important features of BMS are increased 
energy efficiency, less environmental effects, lower energy costs, improved standards of building 
functioning, and efficient use of staff (see Figure 2.4). However, higher initial, operating, and 
maintenance costs and the need for an expert operator are the negative characteristics of BMS [34]. 

  

Figure 2.4: The most significant features of BMS. 

 

With the development of technology, various BMS techniques have been accomplished to introduce 
innovative standards, designs, and web-based services to decrease energy costs, optimize energy use, 
and enhance the quality of living. Kaiwen et al. [57] proposed an intelligent BMS model based on the 
PHP web server monitoring the comfort level and occupant behaviors working. According to their 
results, BMS played a critical role as a bridge between the user and smart grid, leading to 30% higher 
primary energy saving in a custom building. They recommended that highly developed techniques 
should be demonstrated for disabled people to use as well. The performance of in-home BMS using a 
wireless sensor network (WSN) was assessed and compared against the optimization-based model by 
Kantarci and Mouftah [36], concluding that WSN results in lower energy cost, peak load, and carbon 
emission. In a recent study, Chaouch et al. [23] introduced a new smart BMS approach driven by fuzzy 
logic and machine-to-machine communication (see Figure 2.5). 
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Figure 2.5: Outline of the BMS design investigated by Chaouch et al. [23]. 

 

They revealed that the yearly energy consumption is decreased by about 16% without influencing the 
occupant's thermal comfort. Because keeping the occupant thermally comfortable is more complex in 
larger buildings, they recommend applying other artificial intelligence approaches to the smaller 
buildings. Considering the case of Aarhus, located in Denmark, an innovative multi-model BMS 
supporting demand response and energy-efficient control simultaneously was proposed and validated 
by Griful et al. [43]. Tien et al. [124] investigated a new vision-based BMS approach monitoring and 
controlling both the openable windows and HVAC system, as shown in Figure 2.6. 

 

Figure 2.6: The pictorial representation of the BMS model proposed by Tien et al. [124] 

 

They showed that a significantly lower heat loss and annual energy bill are attained because of their 
innovative BMS design. Lately, Salerno et al. [107] presented an innovative, adaptable BMS for a house 
in Montreal, Canada, with no energy transfer from the nearby unit. Their results indicated that due to 
BMS and smart design integration, the levelized cost of heating and cooling is reduced by about 35% 
and 97%, respectively. Also, they showed that the energy consumption would decrease by more than 
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49%, which is so considerable. They suggested that the feasibility study of the proposed smart system 
on a larger scale in the presence of district heating and cooling networks would be an interesting 
research topic for future extension of their work. 

The possible mismatch between energy supply and demand and their intermittency is one of the most 
critical challenges of building energy systems [19]. A smart design of an energy storage system 
controlled by BMS must be applied to increase reliability and stability and reduce the building energy 
consumption and greenhouse gas emission. Hernandez et al. [82] showed that aside from generation, 
demand management, and control and communication, energy storage technology is the crucial 
component of smart houses controlled by BMS. Based on the energy type, energy storage technologies 
are categorized into electrical (battery and capacitor), thermal (sensible, latent, and thermochemical), 
mechanical (flywheel, compressed air, and pumped hydro), and magnetic, as illustrated in Figure 2.1. 
In BMS, selecting the appropriate storage type is important to reduce energy consumption and 
improve the cost-effectiveness and utilization of renewable energy (if any).  

Various strategies, intelligent control techniques, and optimization approaches have been applied to 
energy storage technologies in BMS because they can reduce the energy cost while shaving the peak 
demand and improving the flexibility of time-of-use electricity prices. Sharifi and Maghouli [114] 
implemented a novel scheduling method based on an evolutionary genetic algorithm approach to a 
smart BMS integrated with an energy storage device. They demonstrated that the energy bill is 
reduced by managing the storage unit, and the peak-to-average ratio is improved simultaneously. Xu 
et al. [143] studied the performance comparison of different energy storage technologies applying 
smart BMS. They showed that the existing uncertainties significantly influence determining the best 
integration and optimal operating conditions. In recent research, Aznavi et al. [12] applied a new 
management strategy based on the energy price tag to smart energy storage units to neutralize the 
effect of unpredicted intermittency. It was concluded that the proposed framework keeps the system 
reliable and cost-effective due to lower energy bought from the network. In addition, they 
recommended that policymakers allocate more subsidies to the smart management of storage units 
to stimulate the building owners to adopt such systems. Yan et al. [145] studied the feasibility of three 
management approaches applied to a novel energy storage system in a building located in Beijing, 
China. According to their results, 30% and 16% higher cooling and power load factors were obtained, 
indicating long-term and short-term management effectiveness. They suggested that a comprehensive 
analysis of the system's cost-effectiveness and encouraging policies adopted by the government are 
required for future studies. A smart battery-photovoltaic system handled by an innovative novel 
optimum management strategy was proposed by Liu et al. [73], revealing that 48.6% higher 
performance efficiency and 34.7% lower carbon dioxide emissions was attained compared to the same 
system without smart configuration. In another work, Ahmad and Khan [2] introduced a new algorithm 
based on real-time joint optimization managing smart thermal and electrical energy storage units. 
They concluded that using the proposed intelligent algorithm leads to 16.37% lower operating costs 
while satisfying the comfort requirement. 

 

2.3.3 Building Information Modeling (BIM) and Smart Energy Storage 

These days, due to the increase in energy demand and environmental contamination, the need for 
sustainable, energy-efficient, clean, and cost-effective buildings becomes more crystal clear than ever. 
The last but not least significant smart technology to overcome these challenges and moves toward 
the green transition is the building information modeling (BIM) used by a growing number of 
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architecture, engineers, and contractors [119]. BIM is defined as a process equipped with several tools 
and technologies generating and managing smart data associated with physical and functional features 
of geometry, components, and materials [55]. 

 

Figure 2.7: The most significant advantages of BIM. 

 

According to Figure 2.7, BIM provides numerous benefits: greater cost predictability, improved 
efficiency and effectiveness, fewer errors, optimized design, and a better understanding of future 
operating and maintenance. Lately, Yang et al. [147] studied the benefits, applications, and functions 
of BIM in smart buildings proposing a three-dimensional framework based on BIM and smart 
characteristics and project phases, as shown in Figure 2.8. 

In the literature, BIM has been extensively used to assess and improve the building's performance 
metrics from various aspects. Many researchers have applied BIM to a smart building for safety and 
equipment control analysis [27, 69, 105]. Some scholars have studied the numerical and experimental 
evaluation of an intelligent green building using BIM to assess the environmental and sustainability 
indicators [11, 77, 158]. Some have investigated the cost and schedule estimation to enhance the 
project's economic benefits [28, 71, 83]. Others have carried out the energy and exergy performance 
simulations and life cycle assessment through BIM to reduce the building energy consumption and 
improve the quality of energy conversion [86, 103, 132]. 
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Figure 2.8: A three-dimensional representational of BIM in smart buildings [147]. 

 

Of all components of a smart building system, special attention must be paid to managing and 
modeling energy storage technology's physical and operational characteristics through BIM due to its 
importance in creating more reliability and flexibility and reducing cost and energy consumption. In a 
recent study, Zhuang et al. [169] proposed a BIM framework for a school building equipped with a 
thermal energy storage unit optimizing energy and environmental metrics simultaneously. They 
demonstrated that BIM application results in a higher indoor environmental quality of 11.5% and a 
lower life cycle cost of 36.8%. The performance assessment and maintenance management of a real 
case study building located in Aveiro's University, Portugal, was studied by Matos et al. [84] applying 
BIM. They concluded that the service life and operational interruptions of energy storage and HVAC 
technologies are improved significantly due to BIM use. Duarte et al. [35] applied BIM software to 
optimize the performance efficiency of an educational building heating and cooling system in Brazil. 
According to their results, modeling the building information leads to 12% higher primary energy 
saving and 9% lower components' energy loss in addition to indoor environmental quality 
improvement. In another study, Wu et al. [137] introduced an innovative BIM framework integrated 
with a wireless sensor network to reduce the operating cost while improving the energy efficiency of 
a data power center driven by electrical storage units. Schlueter and Thesseling [111] added an 
advanced tool to BIM software assessing energy and exergy calculations simultaneously. They 
obtained that BIM not only reduces the system's payback period but also enhances the quality and 



 

 

 

ES TCP Final Report Task 37 39 

 

 

reliability of thermal and electrical storage units' controls. Pishdad-Bozorgi et al. [97] investigated the 
use of BIM for developing facilities management of a real project and concluded that the energy 
storage unit is a vital component that must be tracked in the development and planning operations 
phases. The combination of BIM and life cycle assessment to mitigate the greenhouse gas emission for 
a residential building located in China was investigated by Yang et al. [148], showing that the physical 
appearance of components, including energy storage units, has a considerable contribution to reduce 
the carbon emission footprint. 

 

2.4 Conclusions 

This chapter provided several categorizations and detailed review of the applications of smart tools 
(with an emphasis on data analytics) and smart technologies (focusing on BMS and BIM) in design, 
operation, and control of smart energy storage systems (ESS). As energy storage systems are complex 
with several variables subject to a great extent of variation and uncertainty, the literature pointed to 
the importance of accurate estimation of their state and the trends in their input (supply side) and 
output (demand side) variables, and its necessity to support effective operation and control of ESS. 
The state of charge, i.e. the ratio of the releasable capacity of an ESS over its nominal capacity, was 
shown as a key estimation linking the supply and demand side variables affecting the operation of an 
energy storage system. In addition, forecasting the condition and state of health (SOH) of ESS has 
emerged as a means of improving their useful lifetime (RUL) through systematic detection of defects, 
as well as the detection of abnormal behaviours as signs of failure and availability issues. 

IoT technologies were identified as the main emerging driver for integration of distributed energy 
storage (DES) systems. In particular, the use of IoT technologies has created the capability of bringing 
the renewable energy suppliers and utilities to a balancing equilibrium maintained through effective 
design and operation of storage systems. The main advantage reported in the literature was to tackle 
the intermittency of renewable resources, and thus, promoting the sustainability and stability of power 
grid and energy security. Relying on the IoT has provided access to large amount of operational data 
and demand-side information that can serve as a basis for optimization of the operation of energy 
storage systems using data-driven training of intelligent control algorithms. However, there are still 
several challenges with respect to applications of IoT applications in management of ESS including their 
energy intensity as well as issues with respect to privacy and accessibility of information.  

Integration of building management systems (BMS) and building information modeling (BIM) have also 
been reported in the literature as means of incorporating smart design and control features for energy 
storage systems. An ESS controlled by BMS contributes to increasing reliability and stability while 
reducing building energy consumption and greenhouse gas emissions. Various strategies, intelligent 
control techniques, and optimization approaches have been also applied to energy storage 
technologies resulted in shaving the peak demand and improving the flexibility of time-of-use 
electricity prices. In this regard, the recent surge in applications of building information modeling in 
facilities management has emerged with widespread benefits; greater cost predictability, improved 
efficiency and effectiveness, fewer errors, optimized design, and a better understanding of future 
operating and maintenance conditions of buildings, occupants, and the impact on operation of ESS. 
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3 Subtask A Forecasting for Control of Smart Energy 
Storage Systems 

Contributors: Max Langtry, Vijja Wichitwechkarn, Rebecca Ward, Chaoqun Zhuang, Monika J 
Kreitmair, Nikolas Makasis, Zack Xuereb Conti, Ruchi Choudhary 

 

3.1 Introduction 

The purpose of energy storage in building energy systems is to improve their performances and 
conducted by allowing energy to be arbitraged between points in time. This enables improvements in 
the operational performance of a building energy system, as the net energy usage of the system can 
be altered to meet operational targets such as expenditure on electricity, embodied carbon emissions, 
or grid impact, either instantaneously or to improve average performance. For example, in buildings 
with distributed solar generation, at times when local generation exceeds energy usage in the building, 
the excess low-carbon energy can be stored and then used at a later date, reducing energy 
consumption from the grid and the embodied carbon emissions incurred. 

The operational performance improvements that are achieved for a given smart energy system are 
dependent on the controller used to schedule the battery. Therefore, the design of effective control 
schemes is critically important to achieving the goals of building energy management, such as the 
minimization of energy usage, and ensuring occupant comfort. When scheduling battery operation 
there is a fundamental trade-off between improving instantaneous performance and arbitraging 
energy to improve mean performance over the future. The benefit of storing energy to arbitrage 
depends strongly on the future operational conditions the building will face. Hence, improving the 
controller’s information on future operational conditions allows for better management of this trade-
off and so more effective scheduling. Whilst some modern control schemes, such as Reinforcement 
Learning [1], account for predictions of operational conditions implicitly, the provision of high-quality 
explicit predictions can be used to increase their performance. Furthermore, control methods which 
exploit explicit forecasts, such as Model Predictive Control (MPC), are found to provide excellent 
performance [2] as well as clear interpretability. The performance of these methods is dependent on 
the quality of forecasts available for the planning horizon they consider, as the better the prediction 
of the true future conditions, the more effectively the trade-off of arbitrage can be estimated and 
managed. 

Therefore, the development of high accuracy prediction models for forecasting the operational 
conditions of building energy systems is a key requirement for achieving effective control of smart 
energy storage systems. 

The development of prediction models is a data-driven task. Measurement data is required to train 
and calibrate models, as well as assess their performance and determine their suitability for a given 
application. When an energy storage control system is installed, a suitable prediction model must be 
trained, selected, or calibrated, requiring data from the building system being controlled. Developing 
a set of high accuracy prediction models for a particular building energy system requires an 
understanding of the data needed to achieve this. Only if the appropriate data is available can high 
accuracy forecasting be achieved. So, the design of prediction models must be coupled with the design 
of data collection strategies. 

However, data has a cost. Many factors contribute to this cost, including the installation and 
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maintenance cost of monitoring systems, the infrastructure costs of data processing & storage, the 
computational cost of exploiting this data in prediction models, and the cost of delays to smart energy 
system projects caused by the time needed to gather sufficient data. 

When determining the most appropriate prediction models for forecasting in the context of smart 
energy storage system control, the overall performance and cost of both the model and the data 
required to support it must be considered. This raises the following questions which must be answered 
to evaluate the effectiveness of different prediction approaches. 

• How much data is required? I.e. What is the cost-performance trade-off of supporting data? 

• Which variables are most important to achieving effective control? And so where should effort be 

prioritised in prediction? 

• How well does collected data generalise between buildings and over time? I.e. What is the value 

of previously collected data? And how does this depend on the relationship between its source 

and intended application? 

• How can existing data be exploited most effectively? Which prediction models use data most 

efficiently? And can analysis guide how existing data can be used to best effect? 

This sub-task investigates the role of data in enabling high accuracy forecasting for smart energy 
storage systems. To achieve this, the performance of a selection of prediction models is studied in the 
context of providing forecasts for a Linear MPC controller operating batteries within a simulation of a 
multi-building energy system. This framework is used to analyse how different aspects of the 
supporting data impact prediction performance, and the implications this has for the joint design of 
forecasting models and data collection strategies. 

 

3.2 Prediction Task 

The study of prediction models for smart energy storage systems is contextualised within the task of 
providing forecasts for a Linear Model Predictive Controller (MPC) used to schedule battery storage 
units in a multi-building energy system with embedded battery storage and solar generation. This 
allows the quality of the prediction models to quantified using the building energy control performance 
they enable. A simulation environment for performing these experiments is constructed using the 
CityLearn framework [3-4], which is a building energy control simulation framework designed for 
assessing the performance of building energy coordination algorithms for district energy systems. A 
schematic of the energy flows within the multi-building energy system model used in the simulations 
is provided in Figure 3.2. 
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During simulations, observation/measurement data is provided to the prediction models. The 
prediction models then use this observation data to produce forecasts of the required variables, which 
are passed to the linear predictive control model. The resulting linear optimisation problem is solved 
to determine the optimal control action, which is then applied to the battery. The combination of 
prediction model and linear predictive control model comprise the Linear MPC controller. This 
simulation and control loop is summarised in Figure 3.1. The linear predictive control model is 
described by Equation 1, with Table 3.1 providing descriptions of the parameters of the model. Due to 
the linearity of the simulation setup, this model provides a perfect prediction of the system dynamics 
over the planning horizon considered, i.e. the predictive models perfectly matches the true system 
model. The optimisation objective is comprised of three weighted contributions which correspond to 
the cost of grid electricity consumed by the buildings (assuming no net electricity metering), the 
embodied carbon emissions associated with the grid electricity use of the buildings, and the ramping 
of the grid electrical demand which represents the impact on the grid. All contributions are normalised 

by the values they would have if no battery storage were present in the buildings, denoted by 𝑂̃𝑘, 
lower bounded at 1. This clipping is performed to prevent ill conditioning of the objective when the 
no-storage objective values are small. 

Figure 3.1: Control loop of building energy system simulation 
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From the Linear MPC formulation it can be seen that the prediction models are required to provide 
forecasts of the following variables over the planning horizon 𝑇: the electrical demand of each building 
𝐿𝑖[𝑡], the price of grid electricity 𝑝𝑒[𝑡], and the carbon intensity of grid electricity 𝑐[𝑡]. Forecasting of 
normalised solar generation will not be considered, as in practical systems prediction models for this 
variable will rely on external meteorological forecasts, which are not available in the framework and 
are outside the scope of this study. In simulations the controller will be provided with perfect 
predictions of solar generation. 

The overall performance of the Linear MPC controller is evaluated using the same objective function, 
from Equation 1, computed for the complete duration of the simulation. In all experiments performed 
the following objective contribution weights are used when evaluating the control performance, 
(𝛾𝑝, 𝛾𝑐 , 𝛾𝑟) = (0.45,0.45,0.1). From preliminary tests of the Linear MPC controller performance using 
perfect forecasts it is found that a planning horizon of 𝑇 = 48 provides an appropriate trade-off of 
control performance and computation time, and so this prediction horizon length is used for the study 
of the prediction models. 

Therefore, the prediction task is to forecast the following variables: 

• electrical demand for each building 𝐿𝑖[𝑡] 

• price of grid electricity 𝑝𝑒[𝑡] 

• carbon intensity of grid electricity 𝑐[𝑡] 

at each time instance of the simulation for the following 𝑇 = 48 time steps. 

Figure 3.2: Energy flow schematic of district-level building energy system studied. (Icon credits: 
Symbolon) 

https://thenounproject.com/symbolon/
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Table 3.1: Description of Linear Program model parameters 

Equation 1 
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The forecasts produced by the prediction models are assessed in two ways. Firstly, the prediction 
quality of the forecasts is quantified using the following error metrics, the normalised Mean Absolute 
Error (nMAE, Equation 3a), and the normalised Root Mean Squared Error (nRMSE, Equation 3b). 
Secondly, the performance of the forecasts is evaluated in the context of the control task by computing 
the control objective (see Equation 1) achieved by the system simulation. 

 

where 𝑓𝑡,𝜏
𝑣  is the forecast of variable 𝑣 made at time 𝑡 for time instance 𝜏 in the planning horizon, and 

𝑣𝑡+𝜏 is the true value of the target variable 𝜏 time instances after the time 𝑡 at which the forecast is 
made. 

All code used to perform the experiments for this report is available at 
https://github.com/EECi/Annex_37/tree/EECi. 

 

3.3 Cambridge Estates Building Energy Usage Dataset 

For the simulations, a dataset of historic building electricity usage measurements from a set of 
buildings across the Cambridge University Estates covering the period 2010 to 2019 is used [5]. The 
dataset was created to be compatible with the CityLearn framework and contains 10 years of electricity 
usage data for 30 buildings of various use types from the University Estate, such as lecture blocks, 
offices, laboratories, and museums, alongside weather observations and grid electricity price and 
carbon intensity data. The dataset consists of: building electrical load data from the Cambridge Estates 
building monitoring systems, weather data for Cambridge from the Met Office MIDAS dataset [6] 
(temperature and relative humidity) and renewables.ninja reanalysis model [7-8] (direct and diffuse 
solar irradiance), normalised solar generation powers from the renewables.ninja reanalysis model [7-
8], dynamic electricity pricing tariff data from Energy Stats UK [9], grid electricity carbon intensity from 
the National Grid ESO Data Portal [10], and temporal information including hour, day, and month 
indices, as well as daylight savings status. All data is available at hourly resolution. Further detail on 
the data sourcing and processing is available in reference [5]. 

The 10 years of available data is initially split into training, validation, and test datasets covering the 
following periods: train (2010 to 2015), validate (2016 to 2017), test (2018 to 2019). For all experiments 
performed the test data is kept the same, however the periods of data used to train the prediction 

Equation 3a 

Equation 3b 

https://github.com/EECi/Annex_37/tree/EECi
https://www.renewables.ninja/
https://www.renewables.ninja/
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models is altered in Section 8. Of the 30 available buildings, 15 are selected1 for use in the experiments, 
such that they provide a good mix of similarity and dissimilarity between the building electrical load 
training datasets, as defined by the similarity metrics presented in the following Data Analysis section. 

3.4 Data Analysis – Similarity Metrics 

Initially the set of historic building electrical load profiles is analysed to assess the range of energy 
usage behaviours present in the district energy system model studied. A similarity metric is proposed 
to enable the efficient comparison of load profiles. The potential of this metric to provide a data 
analysis based methodology for estimating prediction model generalisation performance is 
investigated in Section 7. 

 

3.4.1 Approach 

A Functional Data Analysis (FDA) approach is used to analyse and compare the building electrical load 
datasets.  In this approach, functional principal components are extracted from the data, such that 
each data sample can be constructed from an equation of the form: 

𝑓(𝑡) =  𝜇(𝑡) +  ∑ 𝛼𝑖𝜈𝑖(𝑡)

𝑖

 

i.e. the data sample 𝑓(𝑡) is constructed from a linear sum of a mean function, (𝑡) and a weighted 
sum of 𝑖 functional principal components (fPCs), 𝑖(𝑡), with weightings or ‘scores’ 𝑖. In this approach, 
the mean function and fPCs are the same across all data samples, whereas the weightings are unique 
to each data sample.  This has the benefit that to compare data samples, which are functions of time, 
it suffices to compare the weightings – a set of discrete values – that can be analysed statistically using 
standard techniques. 

For this study, the datasets have been pre-processed into daily time histories, such that each data 
sample is a 24 hour profile of electricity consumption, starting at midnight. For each building, the 
training dataset comprises 6 years of data and hence 2191 data samples, and the validation and test 
datasets are both 2 years and hence 731 and 730 data samples respectively (2016 was a leap year). 

The fPCA approach used here involves first aligning the data samples to a common mean, (𝑡). This 
generates a warping function and an amplitude function for each data sample that describe how the 
data sample maps to the mean function. The warping function describes the phase relationship, i.e. 
the variation in time, and the amplitude function describes changes in magnitude. The warping and 
amplitude functions are then analysed separately and fPCs generated for both.  The approach is 
illustrated schematically in Figure 3.3, and full details of the approach are described in (Ward, 2021) 
[11].  

 

 

 

1 Building numbers: 0, 3, 9, 11, 12, 15, 16, 25, 26, 32, 38, 44, 45, 48, 49. 
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Figure 3.3: Schematic process for functional principal component analysis (fPCA) 

 

 

Figure 3.4: First 2 Phase (H) and Amplitude (V) PCs. The solid black line is the mean function, (t). The 
dashed line (-) indicates the impact of a +ve coefficient and the dotted line (.) a negative coefficient. 
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Figure 3.5: Sample data for buildings 38 and 49 

 

As an example, Figure 3.4 illustrates the first two phase (H1, H2 - top) and amplitude (V1, V2 - bottom) 
PCs. In the figure, the solid line shows the mean function.  The dashed line indicates the impact of a 
positive PC coefficient and dotted line a negative PC coefficient. Figure 3.5 and Figure 3.6 show 

 

Figure 3.6: Example PC coefficients for Buildings 38 and 49 
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example data and PC scores for two buildings respectively.  The data for Building 49 in Figure 3.5 
exhibits a much lower load range than the data for Building 38 – this corresponds to the less negative 
V1 scores in Figure 3.6 which generate a lower load range when used as a multiplier on the V1 PC.   

 

3.4.2 Calculation of similarity 

Having deconstructed the data as described above, it is possible to use statistical techniques to obtain 
a measure of similarity between the sets of scores for each dataset.  For this we have used an optimal 
transport approach, i.e. an approximation to the Wasserstein, or Earth-mover’s, distance, computed 
using the Geomloss python package2.  This gives a measure of the ease with which one probability 
distribution may be transformed into another and can be interpreted as one measure of the similarity 
between distributions. As an example, Figure 3.7 shows the kernel density distributions for the V1 
scores for Buildings 38 and 49 – the Wasserstein distance calculated for these two distributions is 0.05. 

This calculation is performed for different datasets: 

• Comparing the training data for all 15 buildings, to identify similarity between different buildings 

• Comparing the training and validation datasets for each building 

• Comparing the validation and test datasets for each building 

• Comparing the training and test datasets for each building 

 

The results of these calculations are shown in Table 3.2 and Table 3.3. 

 

 

 

 

2 https://www.kernel-operations.io/geomloss/index.html 

Figure 3.7: Kernel density plot of V1 scores for 
buildings 38 and 49.  The Wasserstein distance 

between these two distributions is 0.05. 

https://www.kernel-operations.io/geomloss/index.html
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L0 L3 L9 L11 L12 L15 L16 L25 L26 L32 L38 L44 L45 L48 L49

L0 0.000 1.888 5.037 0.480 1.019 2.368 0.425 0.296 0.255 0.464 1.903 0.344 0.273 0.484 1.817

L3 1.888 0.000 2.744 1.900 1.527 1.651 1.598 1.625 1.894 2.035 1.149 1.819 1.924 1.873 2.150

L9 5.037 2.744 0.000 5.135 4.748 3.138 4.581 4.409 5.290 5.303 2.811 5.149 4.953 5.096 3.413

L11 0.480 1.900 5.135 0.000 0.967 2.455 0.441 0.510 0.432 0.299 1.810 0.395 0.530 0.314 1.831

L12 1.019 1.527 4.748 0.967 0.000 2.378 0.679 0.895 1.046 1.032 1.345 0.784 0.917 0.786 1.417

L15 2.368 1.651 3.138 2.455 2.378 0.000 2.228 2.150 2.692 2.390 2.120 2.454 2.480 2.363 1.892

L16 0.425 1.598 4.581 0.441 0.679 2.228 0.000 0.467 0.472 0.488 1.497 0.441 0.454 0.439 1.400

L25 0.296 1.625 4.409 0.510 0.895 2.150 0.467 0.000 0.350 0.615 1.557 0.312 0.304 0.420 1.575

L26 0.255 1.894 5.290 0.432 1.046 2.692 0.472 0.350 0.000 0.466 1.964 0.321 0.254 0.474 2.144

L32 0.464 2.035 5.303 0.299 1.032 2.390 0.488 0.615 0.466 0.000 1.936 0.490 0.555 0.399 1.871

L38 1.903 1.149 2.811 1.810 1.345 2.120 1.497 1.557 1.964 1.936 0.000 1.683 1.862 1.753 1.735

L44 0.344 1.819 5.149 0.395 0.784 2.454 0.441 0.312 0.321 0.490 1.683 0.000 0.364 0.307 1.755

L45 0.273 1.924 4.953 0.530 0.917 2.480 0.454 0.304 0.254 0.555 1.862 0.364 0.000 0.506 1.717

L48 0.484 1.873 5.096 0.314 0.786 2.363 0.439 0.420 0.474 0.399 1.753 0.307 0.506 0.000 1.583

L49 1.817 2.150 3.413 1.831 1.417 1.892 1.400 1.575 2.144 1.871 1.735 1.755 1.717 1.583 0.000  

Table 3.2: Similarity across training datasets for 15 buildings 

 

L0 L3 L9 L11 L12 L15 L16 L25 L26 L32 L38 L44 L45 L48 L49

train_validation 0.213 0.600 0.412 0.215 0.537 0.851 0.633 0.453 0.281 0.184 0.783 0.202 0.245 0.390 0.422

validation_test 0.256 0.721 1.622 0.319 0.328 0.319 0.571 0.345 0.295 0.219 0.518 0.263 0.312 0.151 0.722

train_test 0.249 1.041 1.426 0.362 0.621 0.905 0.508 0.690 0.319 0.244 1.157 0.281 0.266 0.408 0.658  

Table 3.3: Similarity across training/validation/test datasets for each individual building 
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3.5 Prediction Methods 

To study the suitability of prediction models for forecasting in smart energy systems, the performance 
of a range of different prediction methods is investigated. The studied methods are selected to span a 
range of model characteristics, such as complexity & computational cost, information requirements 
(i.e. use of covariates), and structural characteristics, which impact a model’s ability to represent 
different types of underlying patterns within timeseries. All of the methods studied are Machine 
Learning (ML) based models, as recent developments in ML techniques for timeseries forecasting have 
shown they can outperform classical methods in many applications. Additionally, ML techniques have 
advantages for practical deployment as they are well suited to retraining on new datasets, as well as 
online training, and require little to no hand tuning. 

In time series forecasting, two strategies can be used: Iterated Multi-Step Forecasting (IMS) and Direct 
Multi-Step Forecasting (DMS). In the former, a single-step forecaster is iteratively used to generate 
multi-step predictions. Conversely, DMS directly predicts all forthcoming time steps within a 
predetermined forecasting window. (Zeng et al., 2023) [12] demonstrates that simple models 
employing DMS forecasting can surpass the performance of complex transformer-based models using 
IMS forecasting. These performance gains were shown to be predominantly attributed to the DMS 
forecasting strategy. As a result, three simple neural architectures using DMS forecasting, with varying 
neural structures, are investigated: 

• Linear: A Multi-Layer Perceptron (MLP) model that maps the inputs directly to the output without 

an activation function (non-linearity). 

• Conv: A Convolutional Neural Network (CNN) model that contains convolution layers followed by 

a linear layer. The architecture used comprises two layers with kernel sizes of 6 and 12, with five 

and one channels, respectively. 

• ResMLP: A Residual MLPSkip model (MLP model with skip-connections), comprised of a single 

hidden layer with 128 neurons. 

To contrast these simple neural models, the following three high complexity, state-of-the-art ML 
models are also studied: 

• TFT: The Temporal Fusion Transformer (TFT) model [13], developed by Google, is an attention-

based architecture that enables the fusion of data from multiple input sources to inform 

predictions. The neural structure contains features which allow for the learning of multiple 

underlying relationships across temporal scales, and the attention mechanism allows for 

interpretation of the model predictions, i.e. which data the model is exploiting to produce its 

forecasts. The model uses categorical covariates of datetime information, as well as temperature 

information for predicting building loads. 

• NHiTS: Neural Hierarchical Interpolation for Time Series Forecasting (NHiTS) [14] is an MLP model 

which learns a set of basis functions at different frequencies that describe the underlying patterns 

in the training data, and produces forecasts by using hierarchical interpolation to combine 

predictions from the basis functions in a computationally efficient manner. It uses categorical 

covariates of datetime information. 
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• DeepAR: DeepAR is a Recurrent Neural Network (RNN) based model developed by Amazon [15], 

which has been widely applied in a range of research areas. It is a probabilistic forecasting model, 

but for this study only the mean prediction is used. The model uses categorical covariates of 

datetime information. 

 

3.6 Method Performance Comparison 

Initially, each of the prediction models is trained using the full training dataset – 6 years of training 
data, 2 years of validation data. These trained models are then used for forecasting in the simulator, 
and the quality of the forecasts provided is evaluated using the nMAE and nRMSE metrics defined in 
Equation 3a and Equation 3b respectively. Figure 3.8 shows the forecast quality results for the nMAE 
metric for each variable predicted by the models. Note that lower metric values indicate better 
forecast quality. The nRMSE results show identical trends, with some scaling differences3. 

The key result from the forecast quality assessment is that all of the models achieve broadly similar 
forecasting performance across the prediction variables. There are a few exceptions to this 
overarching behaviour. For instance, the high complexity, state-of-the-art models provide better 
prediction performance for electricity pricing, indicating they are better suited to representing the 
underlying trends in this data. Additionally, the Conv model shows anomalously poor performance on 
some building load variables, suggesting it is not a reliable model to use for load prediction. However 

 

 

 

3 Figures showing nRMSE results are left out of the report for brevity, but are available to view at 
https://github.com/EECi/Annex_37/tree/EECi. 

Figure 3.8: Comparison of forecasting performance of prediction models 

https://github.com/EECi/Annex_37/tree/EECi


 

 

 

ES TCP Final Report Task 37 66 

 

 

overall these results demonstrate that simple neural DMS models provide analogous prediction 
performance to high complexity models for the forecasting of building load and carbon intensity. 

Table 3.4 presents the computation time4 required to train each of the prediction models and perform 
the inference required for forecasting. It shows that, with the training parameters used, all of the 
models required similar amounts of time to train, but that the inference time of the simple neural 
models is roughly 3 orders of magnitude less than the high complexity models. The computational 
efficiency of these simple models is advantageous for practical applications, as it allows these models 
to be used in systems with shorter prediction intervals, leading to higher frequency control, and allows 
for the use of lower cost compute hardware. Additionally, these models achieve analogous 
performance with lower data requirements as they do not use covariate data, avoiding the cost of 
procuring and handling this data. 

 

Model Training Time (hours) Prediction Inference Time (s) 

Conv 52.5 238 

ResMLP 15.2 109 

Linear 22.8 38 

TFT 13.7 38,647 

DeepAR 22.9 127,783 

NHiTS 30.9 26,430 

Table 3.4: Computational cost of prediction models 

 

Comparing the prediction quality scores between prediction variables, it is observed that for some 
building electrical loads substantially better prediction quality is achieved across all models tested 
compared to other buildings. This consistent difference in forecast quality across models indicates that 
the underlying behaviours in energy usage in certain buildings makes its forecasting more challenging. 
Further investigation of the features that cause this difficulty of forecasting is required, as this impacts 
the achievable performance of battery system controllers for the building, and hence the benefits of 
installing a smart energy storage system. Determining the suitability of embedded storage for different 
buildings is necessary to properly prioritise investment in storage assets. The combined similarity 
metric and generalisation performance analyses performed in Sections 4 & 7 respectively provide an 
initial methodology for achieving this, as buildings with load profiles that have low similarity metric 
distances are found to have good generalisation performance. This means that if a building’s load 
profile is found to be similar to that of a building with low forecasting difficulty, then it is likely to also 
have a low forecasting difficulty. This allows the forecasting difficulty of a building’s electrical load 
profile to be estimated by comparison to load profiles of existing buildings. 

 

 

 

4 Numerical experiments were performed using a high-performance desktop computer – 2.90GHz Intel Xenon 
6226R with 256GB of RAM. 
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Additionally, it is found that forecasting the grid electricity pricing and carbon intensity variables is an 
easier task than predicting building loads, as the models achieve better performance than the average 
for building loads. However, it should be noted that for the test dataset the pricing variable is static 
for substantial durations due to the energy price cap introduce by the UK government in 2022, which 
reduces the difficulty of the price prediction task compared to normal circumstances. 

Finally, the performance of the prediction models with respect to enabling effective control of the 
smart energy storage system is evaluated using the simulation framework, the results of which are 
presented in Figure 3.9. It is found that, as with the forecast quality comparison, all models provide 
similar overall control performance. The relationship between forecast accuracy and control 
performance is explored further in Section 9. 

The forecasting performance comparison results show that the simple neural models achieve similar 
prediction performance to the high complexity models at a substantially lower computational cost, 
and that forecasting electrical loads is significantly more difficult for some buildings compared to 
others. 

 

3.7 Generalisation Performance 

In many cases where new smart energy storage systems are deployed, long durations of historic 
electrical load monitoring data for the building energy system are not available. Gathering multi-year 
load profiles for every new storage system to train prediction models would lead to a substantial cost, 
from both the expense of collecting, handling, and storing the data, and the cost associated with either 
delaying the project or the wasted operational expense from using an inefficient Rule Based Controller 
(RBC) in the meantime. A far more cost effective and data efficient approach is to reuse monitoring 
data from existing buildings, and the prediction models trained from it. However, this requires that the 
prediction performance achieved by the reused models, and the resulting control performance, is 
sufficiently good that the cost savings achieved by the data reuse are not outweighed by the wasted 

Figure 3.9: Comparison of control performance of prediction 
models 
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operational expense from not having a bespoke prediction model5. 

The generalisation performance of the electrical load prediction models in this study is analysed to 
investigate whether model reuse can enable the data savings outlined. For each model type, the 
prediction model trained on the load training dataset for each building is used to forecast the electrical 
load of every other building over the test dataset. Due to the computational cost of the high complexity 
models, only the TFT model is studied in the generalisation analysis, and data efficiency analysis in the 
next section, as it provides the best overall performance of the three models with a good balance of 
training and inference time. Figure 3.10 presents the results of this analysis via a violin plot of the 
distribution of forecast quality metrics achieved by the application of each trained model to each 
building (including the building the model was trained on). It shows that the Linear model provides the 
best generalisation performance, and so is most amenable to model reuse in practical systems. The 
ResMLP and TFT models show slightly worse generalisation performance, but would likely still be 
appropriate for model reuse, whereas the Conv model is found to generalise extremely poorly. For all 
models the tails of the distributions are very long, indicating that models trained on some buildings do 
not generalise well to certain others. 

However, whilst the overall distribution of generalisation performance is important for model 
selection, in the context of deploying a new smart storage system, an understanding is required of 
whether existing trained models will provide appropriate prediction performance for the particular 
building being controlled, and if so, which trained model is likely to provide the best performance. It is 
proposed that the building load profile similarity metrics analysed in Section 4 could provide a method 

 

 

 

5 Reused prediction models can be tailored to the new building system using online training, so the duration 
over which this wasted operational expense occurs is only that required to gather sufficient monitoring data to 
train a bespoke model for the building (either from new or by online training). There are several ways of 
performing the accounting for this counterfactual cost. 

Figure 3.10: Generalisation performance of prediction models – distribution of prediction 
performance over model reuse 
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for determining whether existing trained models are appropriate for reuse for a new building, and 
selecting the best available model. Even in this case, fine tuning is still required. To investigate the 
hypothesis of whether models trained on load profiles that are similar to that of the target building (as 
defined by the similarity metrics) provide good prediction performance, the correlation between 
generalisation performance and the similarity metrics is observed. Figure 3.11 plots the correlation 
between the Wasserstein similarity metric and the prediction performance of the reused models, 
normalised by the prediction performance of the model trained on the target building, indicating the 
factor by which the prediction performance is worsened by reusing a model compared to the case 
where the true building data is collected. It shows that for the ResMLP, Linear, and TFT models there 
is a positive correlation between the prediction quality and the Wasserstein similarity metric. For 
Wasserstein metric scores less than 1, the generalisation performance of reused models is close to 
that of the model trained on data from the target building. With the Linear model, the prediction 
performance penalty of model reuse is under 50% in most cases for a Wasserstein metric less than 1, 
however in a few cases it is up to 150%. As the Wasserstein metric increases, the variance of the 
prediction performance increases, indicating that the trained model is less likely to provide good 
prediction performance for the target building. Similar correlations are found for both the MAE 
similarly metric (plotted for the Linear model in Figure 3.13) and RMSE similarity metric, however they 
exhibit higher prediction performance variance at low metric values, suggesting that the Wasserstein 
metric provides the best indication of whether good generalisation performance will be achieved by a 
reused model. 

 

These results show that prediction models can be reused with a reasonable prediction performance 
penalty. Further, the Wasserstein similarity metric between building load profiles provides an 
appropriate indication of whether a trained model is likely to be suitable for use in a new building 
system, and can be used for the selection of a trained model for deployment. 

However, before this metric can be used for decision making on model reuse in practical systems, the 
quantity of load data from the target building needed to accurately estimate the similarity metric must 
be determined, and compared against the performance of a prediction model trained using that data 
volume. Additionally, the implications of the prediction accuracy penalty incurred in model reuse on 
control performance will determine whether the cost savings from the reduced data requirements 
outweigh the additional operational costs incurred. This relationship between prediction accuracy and 
control performance is explored in Section 9. 
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Figure 3.11: Correlation between model generalisation performance and Wasserstein similarity 
metric 

Figure 3.13: Correlation between model 
generalisation performance and MAE similarity 

metric for Linear model 

Figure 3.13: Correlation between model 
generalisation performance and Wasserstein 

similarity metric for Linear model using 
absolute prediction quality scale 
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3.8 Data Efficiency 

3.8.1 Impact of Training Data Volume on Prediction Performance 

Another option for reducing the data requirements of prediction models is to use a shorter duration 
of historic measurement data for training. However, using less training data can reduce a model’s 
ability to identify and properly learn the underlying patterns in the true data timeseries, reducing the 
model’s prediction performance. In a similar way to model reuse, there is a trade-off between the cost 
of data used to train a prediction model and the performance that model achieves. 

This data-performance trade-off is investigated by re-training each model type 6  using shorter 
durations of combined train & validation datasets, from the initial 8 years of data down to 3 months7, 
all finishing at the end of 2017 as with the base training case in Section 6. Figure 3.14 shows how the 
prediction performance for the pricing and carbon variables, and the mean prediction performance 
over the electrical load variables, varies with the duration of training data used. The figure shows that 
the simple neural models are impacted very little by reductions in training data volumes down to 1 
year, retaining a very similar prediction performance, whereas the performance of the TFT model is 
more sensitive to training data volumes, degrading rapidly in performance for load predictions. 
However, this rapid performance degradation does not occur for every building load variable, in some 
cases the performance sensitivity is analogous to that of the Linear model. Additionally, for some 
buildings, there is significant noise in the ResMLP and Linear model performances, with anomalously 
poor metric scores for certain training data durations. 

Overall the results indicate that the simple neural models are far better suited to training using lower 
data volumes. For the Linear model, reducing from 8 years of training data to 1 year results in a 2.7% 
worsening in mean prediction performance over electrical load variables, increasing to 6.8% for 6 
months of training data. Hence, substantial savings in data requirements can be made with a limited 
reduction in prediction quality if simple neural models are used, which is a significant benefit for 
practical smart energy storage systems. 

 

 

 

6 The Conv model is not considered in this analysis due to its poor generalisation performance identified in the 
previous section, and its high computational cost for training. 

7 For the TFT model, the minimum training data duration that could be used is 2 years, as the use of time 
information covariates requires all values of the categorical month variable in the validation set to be present 
in the training set. 
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3.8.2 Impact of Data Features/Covariates on Prediction Performance 

The efficacy of feature selection on model prediction performance is also investigated by quantifying 
the performance disparity between models utilising a single feature and those incorporating 11 
features. A single layer perceptron (linear) model is used for this performance comparison. For the 1-
feature model, the forecast label served as the sole input; for instance, if carbon intensity was the 
variable to be forecasted, only past carbon intensity data were employed as inputs. Conversely, the 
11-feature model included the variables: building load, normalised solar power generation, grid 
electricity price & carbon intensity, outdoor air temperature, relative humidity, diffuse solar irradiance, 
direct solar irradiance, month, day, and hour. 

As shown in Figure 3.15, the model trained using a single feature outperforms its counterpart trained 
on 11 features. Several factors could contribute to this observed phenomenon: 

i. Overfitting [16]: The incorporation of an excessive number of features may lead the model 

to overfit the training data, thereby diminishing its performance on unseen data. 

ii. Multicollinearity [17]: The presence of highly correlated features can destabilize the model, 

resulting in a decline in predictive performance. 

Figure 3.14: Variation of prediction quality with volume of training data used (combined train & 
validation) 
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iii. Curse of Dimensionality [18]: An increase in the number of features elevates the 

dimensionality of the data, which can lead to data sparsity and consequently degrade 

model performance. 

These findings suggest that feature selection is a critical aspect of model optimisation, and that the 
inclusion of additional features does not necessarily translate to enhanced predictive accuracy. 

 

3.8.3 Online Training 

Building behaviour can change during operation due to external factors such as weather & climate, 
occupancy, and equipment degradation & maintenance. Continuous online training updates the 
predictive models using the collected monitoring data, improving the model's ability to adapt to 
dynamic changes in building behaviour. 

An analysis is conducted to evaluate the impact of different online training frequencies on the 
predictive accuracy of the single layer perceptron model, the results of which are presented in Figure 
3.16. It is observed that higher frequencies of online training led to increased prediction accuracy for 
all prediction variables. For instance, compared to a base case without online training, the model's 
predictive performance for grid carbon intensity improved by 22%, 18%, 15%, and 10% when updated 
monthly, quarterly, semi-annually, and annually, respectively. As a result, it is anticipated that 
integrating online training into MPC frameworks will provide improved adaptability and robustness. 

 

Using simple neural models can drastically reduce the volume of supporting data required to achieve 
high accuracy forecasts. The Linear model provides substantially better prediction performance when 

Figure 3.15: Variation of prediction quality with input features (linear model) 

Figure 3.16: Variation of prediction quality with online training (linear model) 
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training using a single feature, compared to the full set of 11 features. Additionally, it suffers only a 
2.7% reduction in prediction performance when trained using 1 year of historic measurement data 
compared to the base case of 8 years, and a roughly 20% improvement in prediction performance can 
be achieved by updating the model online on a monthly basis. 

 

3.9 Sensitivity of Control Performance to Forecast 
Accuracy 

The goal of forecasting in smart energy storage systems is to enable improved energy management by 
increasing the performance of the battery controllers by providing them with more accurate estimates 
of operational conditions over the planning horizon. The preceding sections investigate the 
performance of prediction models in terms of their mean prediction error compared to the true 
operational conditions over the planning horizon. However, when assessing the benefits of prediction 
models, determining whether the cost trade-off of improved prediction accuracy, and the associated 
data requirements, requires a quantification of how the prediction accuracy maps to control 
performance and the incurred operational cost. 

To investigate the relationship between prediction accuracy and control performance in a controlled 
manner, the Linear MPC controller is provided with forecasts created by adding a Gaussian Random 
Walk (GRW) noise component8 to the ground truth values of the operational variables, as described 
by Equation 4. This noise is added initially to all prediction variables, and then each of the variable 
types (load, pricing, carbon) in turn. Figure 3.17 shows the correspondence between the amplitude 
(standard deviation) of the noise added to create the forecast, and the nMAE prediction accuracy 
metric. All electrical load variables are found to have the same relationship. 

 

Figure 3.18 shows how the overall control performance, and each of the objective contributions, varies 
with the amplitude of the GRW noise added to each of the variable types. The results show that whilst 
the accuracy of the electrical load forecasts has the lowest impact on the overall control objective, it 
has the greatest effect on the electricity cost (price) and embodied carbon emissions contributions, 
greater than that of the forecasts of the pricing and carbon variables themselves. Whereas, the 
prediction accuracy of the pricing and carbon variables has a substantially greater effect on the grid 
load ramping objective contribution, which is much more sensitive to prediction accuracy than the 
other two contributions. This provides guidance as to where modelling effort and expenditure on data 
should be prioritised depending on the building system manager’s weighting of these three objectives. 

It is suggested that the sensitivity of the price and carbon objectives to electrical load prediction 
accuracy is a result of the controller misidentifying when high loads will occur, causing it to fail to store 

 

 

 

8 The results of this analysis depend on the additive noise model used. 

Equation 4 
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low-cost and/or low-carbon energy to meet these loads, meaning that comparatively high-cost, high-
carbon grid electricity is required to satisfy the remaining unmet load when it occurs. However, up to 
the maximum level of noise used for testing, the controller achieves objective values of less than 1 for 
these two contributions, indicating that the battery still provides benefit to the building energy system 
for these operational metrics. 

The results from Figure 3.17 and Figure 3.18 can be used to estimate the operational cost savings 
resulting from improved prediction accuracy, and so determine whether expenditure on data and 
compute to enable better forecasting is a cost effective strategy for a building system operator.  

Figure 3.17: Variation of prediction performance with amplitude (standard deviation) of Gaussian 
Random Walk noise 
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3.10 Summary 

This chapter investigates the role of data in enabling high accuracy forecasting for smart energy 
storage systems. It studies the capability of different Machine Learning models to provide forecasts of 
electricity demand, and grid electricity cost & carbon emissions for a Linear Model Predictive Controller 
used to schedule battery storage units in a multi-building energy system with embedded storage and 
solar generation. The performance of the prediction models is assessed using both the accuracy of the 
forecasts provided and the quality of battery scheduling control enabled. Prediction performance of 
the models is assessed against their computational expense, data requirements, and generalisability. 

The key finding is that simple neural DMS models provide analogous prediction performance to high 
complexity, state-of-the-art ML models with significantly lower computational cost, and have 
substantial data efficiency advantages. 

Simple neural models achieve similar prediction quality scores to high complexity models across all 
price, carbon, and electrical load prediction variables, with roughly similar training times, but 3 orders 
of magnitude lower inference times. This is advantageous for practical applications as it allows for the 
use of higher control frequencies and cheaper compute hardware. Further, these simple models are 
found to be significantly more data efficient and far better suited to applications where data 

Figure 3.18: Impact of forecast noise on control performance 
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availability is restricted. They perform substantially better than high complexity models when limited 
quantities of training data are available, with the Linear model suffering only a 2.7% reduction in 
prediction performance when trained using 1 year of data compared to a baseline of 8 years, and 
provide better prediction performance when trained using a single input feature, compared to the full 
set of 11 features. Additionally, online training can further improve model performance, with 
prediction quality of the Linear model increasing by approximately 20% when updated monthly. It is 
anticipated that integrating online training into MPC frameworks will provide improved adaptability 
and robustness. 

The data collection requirements for new battery control systems can be reduced by reusing 
measurement data and trained models from existing buildings. For certain combinations of buildings, 
prediction models achieve good generalisation performance, with the reused models providing high 
accuracy forecasts. However, the variance in generalisation performance is substantial, with some 
reused models performing 6 times worse in terms of prediction quality compared to a model trained 
using the true building data. The Wasserstein distance between fPCA component weight distributions 
of building load profiles provides a data analysis based approach for determining whether model reuse 
will provide suitable prediction accuracy, and for selecting the best pretrained model for use in a new 
building system. For values of this similarity metric less than 1, the prediction performance penalty for 
model reuse using the Linear model is under 50% in most cases. 

Forecasting grid electricity price and carbon intensity is found to be an easier task than forecasting 
building electrical load, with all models achieving higher prediction accuracy on average. However, the 
difficulty of forecasting electrical load varies significantly between buildings, with the set of models 
tested differing in prediction quality by a factor of 6 across the buildings. This indicates that in practical 
data collection strategies it may be beneficial to target expenditure on supporting data on certain 
buildings where the load profile is more difficult to predict. 

The impact of reduced data usage on prediction accuracy can be mapped through to control 
performance to determine whether the savings in data costs outweigh the increased operational cost 
due to the impact on battery scheduling capability. This provides a methodology for determining the 
most cost effective data collection strategies for smart energy storage systems.  
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4 Subtask B: Data-driven Modelling of Energy Storage 
Devices using machine learning 

Contributors: Christian Obrecht, Frederic Kuznik 

 

Abbreviations: 

• AI: Artificial Intelligence 

• ANN: Artificial Neural Network 

• CFD: Computational Fluid Dynamics 

• FNN: Feedforward Neural Network 

• GMDH: Group Method of Data Handling 

• LSTM: Long Short-Term Memory 

• ML: Machine Learning 

• PCM: Phase Change Material 

• Recurrent Neural Network: RNN 

• RMSE: Root Mean Squared Error 

4.1 Foreword: Online questionnaire 

4.1.1 Introduction 

The objective of subtask B is to analyze the numerical models developed at the component scale for 
optimization, design and control of energy storage systems integrated in buildings and districts. In 
order to carry out such analysis, a comprehensive and up-to-date set of information is mandatory. It 
was therefore decided to build a database gathering as much information as possible on recent or 
ongoing research works on energy storage systems, including (at least some) modeling attempts. 

The resulting database would be freely available in SQLite format and, if deemed useful, would be 
made accessible to queries through a web interface. By using relevant queries, it would therefore 
become possible to reliably identify current trends or, to the contrary, unexplored paths in energy 
storage system modeling. Beside other aspects, questions of interest include the intended purpose of 
the developed models (design, control, optimization...), the chosen modeling strategy, and the 
strengths and weaknesses of the models. 

4.1.2 Survey 

To feed the database, we chose as a main source to compose and circulate an online survey. Since we 
wanted to be able to point out potential correlations between the modeled energy storage systems 
and some characteristics of the models, we chose to gather comprehensive information regarding the 
systems themselves such as storage technology, intended application, and key performance indicators. 
The survey is divided in five parts and contains 38 questions listed below. Single choice answers are 
inside curly braces; multiple choice answers are inside square brackets; optional questions are typeset 
in italics. 
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• GENERAL INFORMATION 

o First name 

o Last name 

o Affiliation 

o Email address 

o Project full name 

o Project acronym 

o Website 

o Start date 

o End date 

o Type of work [Experimental, Numerical] 

o Comments 

• STORAGE TECHNOLOGY 

o Type of storage {Hot storage, Cold storage, Power storage, Other} 

o Physical phenomena {Sensible heat, Latent heat, Thermochemical, Electrochemical, 

Mechanical, Other} 

o Comments 

• STORAGE APPLICATION 

o Storage integration [Individual dwelling, Dwelling unit, Tertiary building, Industrial building, 

District] 

o Temperatures (TES) 

▪ ▪ Source minimum temperature [°C] 

▪ ▪ Source maxmum temperature [°C] 

▪ ▪ Source flow rate [m³/h] 

▪ ▪ Nominal working temperature (storage medium) [°C] 

▪ ▪ Reference indoor environment temperature [°C] 

o Size of the whole component  [m³] 

o Duration of storage {Hours, Days, Seasonal} 

o Type of storage material 

o Quantity of storage material  [kg] 

o Comments 

• KEY PERFORMANCE INDICATORS (KPI) 

o Storage capacity 

▪ Total capacity [Wh] 

▪ Maximum useful capacity [Wh] 

o Recharging energy  [Wh] 

o Maximum charge and discharge power 

▪ Maximum charge power [W] 

▪ Maximum discharge power [W] 

o Depth of discharge (DoD)  [%] 

o Durability 
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o Specific cost  [USD/kWh] 

o Maximum self-discharge rate [%] 

▪ 1 h 

▪ 10 h 

▪ 100 h 

▪ 1000 h 

o Stored energy factor [%] 

o Generated savings 

▪ Energy saving [kWh] 

▪ Cost saving [USD] 

▪ Reference period [days] 

• NUMERICAL MODELLING 

o Modelling objectives [Design, Control, Optimization, Understanding of physical phenomena, 

Other] 

o Modelling strategy [Physical PDE, Reduced order model, Statistical model, Machine learning, 

Other] 

o Model validation [Data from literature, Laboratory experiments, In situ experiments, Other] 

o Validation data references (URL or DOI) 

o Model outcomes  

o Model strengths  

o Model weaknesses 

o Relevant references (URL or DOI) 

 

The survey was implemented using the Limesurvey platform hosted by INSA Lyon and is still available 
at https://limesurvey.insa-lyon.fr/index.php?r=survey/index&sid=179787&lang=en. It is expected to 
require 15 to 20 min to be filled. It was advertised during annex meetings and through emails to 
numerous members of the energy storage community. 

4.1.3 Results 

Despite being online for almost one year the survey had disappointingly little success. As of the time 
of this writing only about twenty questionnaires have been filled (at least partially but sufficiently to 
be significant). This is by far insufficient to draw any conclusion. Given the small volume of data it 
represents, answers will be saved in a simple CSV file. Despite the fact that such questionnaire seemed 
a reliable and efficient strategy to gather information, we must admit the failure of our attempt. As a 
result, we chose to resort to a literature review which should be a more effective way to gather 
information although it’ll largely ignore ongoing research. 

In recent years, probably because of an increasing workload in many countries, more and more 
academics became reluctant to get involved into voluntary (and possibly time-consuming) activities 
such as manuscript reviewing, as pointed out by many scientific journal editors. It seems that the 
developed survey suffered from the same trend and we should have reflected on some kind of 
incentive to get a significantly broader participation. 
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4.2 Introduction 

4.2.1 Context 

The global buildings sector consumes an estimated 30% of global energy, in the form of electricity and 
gaseous, liquid and solid fuels and district energy for building energy uses (e.g. heating, cooling, 
cooking, lighting and equipment), and is responsible for around 27% of global operational related CO2 
emissions [16]. It is clear that buildings play an important role in the objective of net zero carbon 
emission by 2050. 

Energy storage has to play an important role in energy management and rationalization in the building 
sector by increasing renewable energy use [52], [36], [7] and [38]. To achieve the political goals for 
reducing CO2 emissions, the optimal use of energy in buildings along with the electrification of the 
energy systems is becoming increasingly important. Local energy systems must respond to fluctuations 
with increasing flexibility by using storage systems. 

4.2.2 Why and how 

There are numerous approaches in research for the optimal use of storages, e.g., Rule-based Control 
(RBC), Model Predictive Control (MPC) or Adaptive Control (AC). Most of these methods depend on 
accurate and fast models of the dynamics of the system. 

A major obstacle for the provision of equation based (white-box) models is the possible need for 
engineering services. Moreover, creating such models is, even for domain experts, a very time-
consuming task, which must be executed after each change in the system. One approach to reduce 
the modelling effort and increase model accuracy is referred to as grey-box modelling. In grey-box 
modelling, comparatively simple mathematical equations are calibrated with data from tables or 
monitoring-data. The pure data-driven approach is referred to as black-box modelling [39, 48]. Here, 
the system dynamics are learned purely based on monitoring-data and only the inputs and outputs of 
the models are defined. 

Due to the increasing availability of data, computing power, and algorithms from the field of machine-
learning, black-box modelling has become more and more relevant in recent years. Some case study 
dealing with the use of artificial intelligence for heat storage in buildings can be found in [10]. A review 
on artificial intelligence for thermal energy storage is given in [40] and [23]. 

We propose in the Subtask B to review the existing literature on data-driven modelling of energy 
storage devices for buildings application. 

4.3 Machine learning 

The first use of “Artificial intelligence” (AI) was by computer scientist McCarthy in 1954. AI is the ability 
to mimic the cognitive functions of humans, such as learning and problem-solving which are distinct 
features of the human mind [47]. In recent years AI applications in energy systems have gained more 
focus [15]. 

Machine Learning (ML) is a branch of AI which focuses on learning and modifying the process or making 
new decisions based on newly acquired data. Basically, there are three types of machine learning: 
supervised learning, unsupervised learning, and reinforcement learning. 

The main goal in supervised learning is to learn a model from labeled training data that allows us to 

https://www.sciencedirect.com/topics/engineering/predictive-control-model
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make predictions about unseen or future data. In this context, the term "supervised" signifies a 
compilation of training examples, comprising data inputs for which the corresponding desired output 
signals or labels are already provided. Thus, supervised learning encompasses the procedure of 
formulating a model that captures the underlying relationship between the given data inputs and their 
associated labels. When confronted with discrete class labels, as exemplified by tasks like email spam 
filtering, this type of supervised learning is termed a classification task. An additional subset of 
supervised learning is regression, in which the predicted outcome signal is a continuous values. 

Another type of machine learning is known as reinforcement learning. Within the framework of 
reinforcement learning, the objective centers around crafting a system, often referred to as an agent, 
which enhances its own performance through engagements with its surrounding environment. Given 
that data regarding the ongoing state of the environment usually incorporates what is known as a 
"reward" signal, we can liken reinforcement learning to the domain of supervised learning to some 
extent. Nevertheless, in the context of reinforcement learning, this feedback doesn't serve as the 
accurate, definitive label or value, but rather as an assessment of the effectiveness of an action, as 
gauged by a reward function. 

In supervised learning, we know the right answer (the label or target variable) beforehand when we 
train a model, and in reinforcement learning, we define a measure of reward for particular actions 
carried out by the agent. In unsupervised learning, however, we are dealing with unlabeled data or 
data of an unknown structure. Using unsupervised learning techniques, we are able to explore the 
structure of our data to extract meaningful information without the guidance of a known outcome 
variable or reward function. Clustering stands out as an approach within exploratory data analysis and 
pattern discovery, allowing us to categorize a wealth of information into coherent subsets, or clusters, 
without any foreknowledge of their group affiliations. Another facet of unsupervised learning pertains 
to dimensionality reduction. Frequently, our data exhibits high dimensionality, with each instance 
associated with an abundance of measurements. This can pose challenges in terms of storage capacity 
and the computational efficiency of machine learning algorithms. The realm of unsupervised 
dimensionality reduction offers a widely employed technique in feature preprocessing, geared 
towards eliminating noise from data that might otherwise impair the predictive capabilities of certain 
algorithms. This process involves condensing the data onto a lower-dimensional subspace while 
retaining the majority of pertinent information. 

Figure 4.1 shows a typical workflow for using machine learning in predictive modeling [42]. 
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Figure 4.1: Predictive modeling workflow 

Supervised ML for predictive modelling is the topic of this report. The most widely used learning 
algorithms for this application are: 

• Regression 

o Linear regression 

o Linear discriminant analysis 

o Naive Bayes 

o Logistic regression 

o Support-vector machines 

• Artificial neural network 

o Recurrent neural network 

▪ Elman networks and Jordan networks 

▪ Hopfield 

▪ Bidirectional associative memory 

▪ Echo state 

▪ Independently RNN (IndRNN) 

▪ Recursive 

▪ Neural history compressor 

▪ Second order RNNs 

▪ Long short-term memory 

▪ Gated recurrent unit 

▪ Bi-directional 

▪ Continuous-time 

https://en.wikipedia.org/wiki/Recurrent_neural_network#Elman_networks_and_Jordan_networks
https://en.wikipedia.org/wiki/Recurrent_neural_network#Hopfield
https://en.wikipedia.org/wiki/Recurrent_neural_network#Bidirectional_associative_memory
https://en.wikipedia.org/wiki/Recurrent_neural_network#Echo_state
https://en.wikipedia.org/wiki/Recurrent_neural_network#Independently_RNN_(IndRNN)
https://en.wikipedia.org/wiki/Recurrent_neural_network#Recursive
https://en.wikipedia.org/wiki/Recurrent_neural_network#Neural_history_compressor
https://en.wikipedia.org/wiki/Recurrent_neural_network#Second_order_RNNs
https://en.wikipedia.org/wiki/Recurrent_neural_network#Long_short-term_memory
https://en.wikipedia.org/wiki/Recurrent_neural_network#Gated_recurrent_unit
https://en.wikipedia.org/wiki/Recurrent_neural_network#Bi-directional
https://en.wikipedia.org/wiki/Recurrent_neural_network#Continuous-time
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▪ Hierarchical recurrent neural network 

▪ Recurrent multilayer perceptron network 

▪ Multiple timescales model 

▪ Neural Turing machines 

▪ Differentiable neural computer 

▪ Neural network pushdown automata 

▪ Memristive Networks 

o Feedforward Neural Network: 

▪ Linear neural network 

▪ Perceptron 

▪ Multilayer perceptron 

o Convolutional Neural network: mainly used for image recognition 

o Spiking neural network 

o Bayesian neural network 

Out of the various algorithms utilized in the field, the artificial neural network (see Figure 4.2) emerges 
as the most extensively employed. An artificial neural network, often abbreviated as ANN, operates by 
utilizing an assembly of interconnected units or nodes referred to as artificial neurons. These artificial 
neurons are a loose simulation of the neurons found in biological brains. Similar to the synapses in a 
biological brain, each connection in an ANN has the capacity to transmit a signal to other connected 
neurons. Upon receiving signals, an artificial neuron processes them, subsequently transmitting signals 
to its interconnected neurons. The nature of the "signal" coursing through a connection is represented 
by a real number, while the output of each neuron is determined through a non-linear function applied 
to the cumulative sum of its inputs. These connections are referred to as edges. Neurons and edges 
are typically assigned weights that are adjusted as the learning process unfolds. These weights serve 
to amplify or diminish the potency of the signal traversing a connection. Moreover, neurons may 
feature a threshold, ensuring that a signal is dispatched only when the cumulative signal surpasses said 
threshold. 

Typically, neurons are aggregated into layers. Different layers may perform different transformations 
on their inputs. Signals travel from the first layer (the input layer), to the last layer (the output layer), 
possibly after traversing the layers multiple times. 

https://en.wikipedia.org/wiki/Recurrent_neural_network#Hierarchical_recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network#Recurrent_multilayer_perceptron_network
https://en.wikipedia.org/wiki/Recurrent_neural_network#Multiple_timescales_model
https://en.wikipedia.org/wiki/Recurrent_neural_network#Neural_Turing_machines
https://en.wikipedia.org/wiki/Recurrent_neural_network#Differentiable_neural_computer
https://en.wikipedia.org/wiki/Recurrent_neural_network#Neural_network_pushdown_automata
https://en.wikipedia.org/wiki/Recurrent_neural_network#Memristive_Networks
https://en.wikipedia.org/wiki/Recurrent_neural_network#Memristive_Networks
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Figure 4.2: Schematic representation of an ANN – each circle is a neuron; arrows are a connection. 

The bibliography on ANN shows there are two broad types of artificial neural network, characterized 
by direction of the flow of information between its layers: 

• Feedforward Neural Network: It is the type where the flow of information is uni-directional, 

meaning that the information in the model flows in only one direction—forward—from the input 

nodes, through the hidden nodes and to the output nodes, without any cycles or loops 

• Recurrent neural network:  In contrast to uni-directional feedforward neural network, it is a bi-

directional artificial neural network, meaning that it allows the output from some nodes to affect 

subsequent input to the same nodes. 

The classification of Supervised ML is really important in order to 1) understand the possibilities given 
by this technique and 2) assess the gap between the state-of-the-art in energy storage and the state-
of-the-art in ML. 

4.4 Thermal energy storage systems 

The following sections refer to the classification of heat storage by physical phenomena described in 
[33]. From a mathematical point of view, those phenomena lead to really different numerical model 
stiffness.  

4.4.1 Sensible heat storage 

The first attempt to use artificial neural network for systems including water tank is reported in 1999 
[29]. The system under consideration is a solar domestic water heating system. The data were 
collected from tests carried out according to the Greek standard ELOT 879 for systems available to the 
Greek market. The data varied from collector areas between 1.81 and 4.38 m2. Both open and closed 
systems were considered, supplied with vertical or horizontal water storage tanks. The outputs of the 
model are the useful energy extracted and the temperature rise in the stored water. The inputs are 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
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the climate conditions, collector area, U-value, tank type, storage capacity and type. The feedforward 
ANN is implemented with three hidden slabs. Predictions within 7.1 % and 9.7 % are obtained useful 
energy extracted and temperature rise in the stored water. Similar application and model are also 
reported in [29] with an acceptable prediction capability for engineering applications. 

The artificial neural network of a storage tank of a solar thermal system is developed in [21]. The model 
is based on the measured data of a domestic hot water system: flat-plate collector area of 1.65 m2 and 
a solar storage tank, without electrical heater, of 0.15 m3. Measured data are gathered every minute 
during the period of July 5 – December 22, 2006. The model aims to estimate the temperature at 
different locations of a water storage tank with a five minutes resolution (i.e., thermal stratification). 
Inputs are mass flow rates of load and solar collector, solar irradiation and inlet temperature at the 
current timestep and the temperatures at the same locations at the previous timestep. The multi-layer 
perceptron ANN is implemented with the help of MATLAB Neural Network Toolbox. The model gives 
acceptable results inside the training interval as the average deviation was 0.22 °C during the training 
and 0.24 °C during the validation. 

A solar thermal energy system is studied in [58] and ANN is used to predict the behaviour of the 
stratified heat storage water tank. The experimental system consists mainly of two flat-plate solar 
collectors, having a total surface area of 5.75 m2, a thermally insulated vertical storage tank of 183-L 
capacity, a propane-fired tank of 189-L capacity as a source of auxiliary energy, an air handler unit, and 
a city water reservoir of 1000-L capacity. The experiments were conducted from March 2011 to 
December 2012, covering the seasons and weather condition. The quantities of interest are the 
ambient air temperature, the solar radiation on the horizontal and inclined planes and the preheat 
tank stratification temperatures T1–T6 at time t − 1. The outputs are the preheat tank stratification 
temperatures T1–T6, the heat input from the solar collectors through the heat exchanger into the 
system and the auxiliary heat input into the system by the propane-fired hot water tank. The neural 
network selected here is a multilayer feed-forward perceptron with one hidden layer. The Levenberg–
Marquardt back-propagation algorithm is applied as the method for achieving fast optimisation. The 
preheat tank temperature predictions agreed very well with the experimental values using the testing 
data sets with mean relative errors in the range of 1.09–1.18 % and standard deviations of relative 
errors in the range of 1.04–1.87 %. 

An earth air heat exchanger and seasonal storage system are under investigation in [2]. The system is 
composed series of two connected underground tanks coupled with a cooling floor. The cylindrical 
tanks are buried 3 m below ground level. Each tank was 2 m length, 1.2 m wide, and 2.5 m3 in volume. 
The experimental data are collected for thirteen days, starting from the 2nd of July 2015. The input 
data of the model are the outdoor temperature, outdoor humidity and the inlet temperature of the 
underground tank 1. The long-short-term-memory artificial neural network is chosen to evaluate the 
outlet underground tank temperature. It is worth mentioning that the training and validation dataset 
are the same. The results show that the mean squared error and the root means square error for the 
underground tank temperature are 0.165 and 0.406 respectively. 

Thermal energy storage integrated into building energy systems is investigated in [34]. The 
experimental system is a scaled-down mock-up system for the comparative analysis of the 
performance of different control strategies for building energy systems that have a chilled water TES 
tank [35]. The system consisted of an air-source heat pump chiller, sensible TES tank, heat exchangers, 
and five variable-speed pumps. The quantities of interest are the water tank temperature, the 
temperatures of the top, middle and bottom TES tank layers, the chiller inlet and outlet temperatures, 
the chiller power consumption and pumps on the primary side. The inputs are the quantities of interest 
at the previous time-step, environmental temperatures and flowrates. The Neural Network Toolbox in 
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MATLAB R2020a is used to develop the AI model. The root mean square error values are less than 
0.6 °C and 0.1 kW for temperature and power consumption predictions respectively on the validation 
dataset. It I worth mentioning that the ANN model is develop for predictive control of the system. 

A physics-informed neural networks for building thermal mass investigation is developed in [3]. In 
order to analyse the effect of thermal mass, two rooms with light and heavy thermal mass are 
experimentally investigated. The quantities of interest are the room temperature and thermal load 
demand while inputs are the outside air temperature and the states of room (temperature, AC 
system's action and thermal load demand) at the previous time step. The originality of the work lies in 
the development of a physics-informed neural network including building thermal dynamics modelling. 
Compared with pure data-driven model neural networks and physic-based grey-box model 2R2C, the 
developed hybrid model performs better in predicting thermal dynamics states with a lower prediction 
error of temperature (mean absolute error is less than 0.25 °C). It is also worth mentioning that the 
study also investigates demand response control. 

Beside the use of experimental data to develop modelling of the system, some studies use physical 
numerical models (white-box) to derive black-box model with calculation results. For instance, [5] 
proposes to investigate a district cooling system with ice thermal energy storage (campus of Mississippi 
State University). The ice storage loop consists of a 1100-ton chiller, at the ice making setpoint 
temperature −5.0 °C, that is used to produce the ice in 54 ice storage modules totalling a capacity of 
34,300 kW h of cooling. A numerical model is used to produce the required data. The quantities of 
interest are the electrical power of the plant and the ice storage heat transfer rate. The network used 
to model the performance is a simple feedforward network using hyperbolic activation functions due 
to the output of the scaled ice storage heat transfer being [−1, 1]. The final objective of the study is 
the optimal control of the system based on a genetic algorithm. 

 

4.4.2 Latent heat storage 

The first tentative of data based modelling of phase change heat storage is reported in [17]. The 
storage system is a finned tube in which ethyl-alcohol is flowing at low temperature at the inner side 
and water is solidifying on the outer surface of the tube. The experimental data are taken at three 
different inlet temperatures and six different Reynolds number. Thus, a total of 45 experimental runs 
are carried out. The inputs of the model are the heat transfer area, the Reynolds number, the heat 
transfer fluid inlet temperature and time. The calculated quantity of interest is the total thermal energy 
stored. A three-layer feed-forward back-propagation neural network is implemented in C++. The 
results show that 1) the black-box model presents a better agreement than the physical-based model 
of the system and 2) the model shows an absolute mean relative error of 5.58 % only. 

A commercialised product manufactured by Sunamp Limited in the United Kingdom is investigated in 
[22]. The system comprises a dense tube-and-fin type heat exchanger made up of aluminium fins and 
a copper tube encased in a polymer housing. This heat exchanger is filled with a patented inorganic 
phase change material based on a sodium acetate trihydrate formula during the production process 
while in liquid form. Experimental data are collected, varying charging temperature and charging mass 
flow rate. The objective of the neural network model developed in this study is to approximate the 
outlet fluid temperature from the heat exchanger given two inputs 1) inlet fluid temperature and 2) 
the inlet mass flow rate. A layered digital dynamic neural network is developed using MATLAB toolbox. 
It is worth mentioning that the training dataset is different than the validation dataset. The coefficient 
of determination values for the different training and testing sets were calculated to be 0.999 and 



 

 

 

ES TCP Final Report Task 37 90 

 

 

0.889 respectively, for outlet temperature. 

A solar chimney filled with phase change materials is the application studied in [19]. The experimental 
data come from in-situ real-scale measurements, more information can be found in [18]. The inputs 
are the absorber surface temperature recorded by sensors at 8 different heights while the output 
consists of four airflow temperatures at different heights. An ANN based on multi-layer perceptron is 
developed using MATLAB with the help of error backpropagation. The trained network has a high 
capability in predicting the process outputs; so that the average value of the relative errors, computed 
for the test data set, is 1.8326 %, and the maximum value of the relative error is 2.1546 %. However, 
it is worth mentioning that the inputs being measured temperatures, the model cannot be neither 
generalized nor used easily! 

Phase change material mortars are experientially investigated in [41]. Paraffin, halloysite and ethylene 
glycol mixtures are tested from a mechanical point of view, but also from a thermodynamical aspect 
in an experimental building. The inputs of the model are the PCM type and the ambient air 
temperature. The output is the energy consumption of the air-conditioning unit. A hybrid Deep Neural 
Network algorithm, in which the learning algorithm was modified with Manta Ray Foraging 
Optimization Algorithm (MRFOA), is implemented. The training dataset is different from the validation 
dataset. The validation results show that the proposed model achieves an accuracy of 0.0159 root 
mean square error. It is worth mentioning that the neural network developed cannot be used in 
another room configuration. 

Beside the use of experimental data to develop modelling of the system, some studies use physical 
numerical models (white-box) to derive black-box model with calculation results. These studies are 
presented hereafter. 

In [13], a centralized latent heat thermal energy storage system integrated in a building mechanical 
ventilation system is investigated. The phase change material is paraffin RT20. A computational fluid 
dynamics model of the heat storage system is developed and validated in [14]. The quantity of interest 
is the outlet temperature from the storage system while the inputs are the heat transfer fluid, the inlet 
temperature, and the volume fraction. The authors chose to use feed forward group method of data 
handling artificial neural network. The ANN model allows a good prediction of the outlet air 
temperature with an impressive reduction of the computational cost compared to CFD. 

Phase change material integrated in building walls is investigated in [32]. A TRNSYS numerical model 
is developed to evaluate the impact of PCM on the heating energy consumption. Input parameters are 
melting point, PCM thickness, PCM density, latent heat and thermal conductivity. The black-box is 
based on polynomial regression with the help of a design of experiments. Contrary to most of the 
literature, the black-box model is used to optimize the PCM based on existing materials database. 

Phase change materials integrated in building walls are optimized in [1]. For that purpose, an ANN 
model is developed based on simulation carried using EnergyPlus software. It is worth mentioning that 
the building of interest is not a real house but the ASHRAE case 600. In this study, the quantities of 
interest are the heating and the cooling loads while the inputs are the thermal resistance of exterior 
walls, the melting temperature of PCM, the thickness of the PCM layer, the internal gain and infiltration 
rate. The authors chose to implement a group method of data handling artificial neural network. The 
heating and cooling loads root mean squared error are 0.003 kWh. The final use of the ANN model is 
an optimization of the PCM integrated in building walls. 

A 40 × 80 × 80 mm3 container with two enhanced heat transfer structures of fins and metal foam is 
filled with PCM in [6]. The experimental data are used to validate a physical-based numerical model. 

https://www.sciencedirect.com/topics/engineering/thermal-energy-storage-system
https://www.sciencedirect.com/topics/engineering/ventilation-system
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The outputs of the ANN model are the liquid fraction and the average Nusselt number during the phase 
change process. The inputs are the melting time, the inclination number and the fin number. The 
authors developed an artificial neural network based on feed-forward multilayer perceptron. Excellent 
predictions of liquid fraction and the average Nusselt number are obtained by ANN with mean square 
errors of 9.6480 × 10−5 and 0.9990 respectively. 

A water-PCM solar thermal storage system for domestic hot water application is studied in [12]. An 
experimentally validated numerical model for the system is used to generate the training and testing 
datasets for the ANN model. The quantity of interest if the solar fraction of the system while inputs 
are the collector area, the tank volume, the load temperature, the PCM melting temperature and the 
PCM volume fraction. A feed-forward multi-layer ANN type is chosen for this study. The optimized ANN 
model is then deployed to generate design maps for the system, offering accessible sizing and selection 
guidelines for the key design parameters: the storage tank volume, the PCM volume fraction and the 
PCM melting temperature. It is worth mentioning that the numerical model calculation time would be 
over 120 h compared to around 5 s using the ANN model. 

 PCM lauric acid heat storage system unit with vertical fins is studied in [8]. CFD simulations are carried 
for 16 cases with different fins geometries. The CFD model is validated using experimental data from 
the literature. The quantities of interest are liquid fraction and dimensionless stored energy while the 
input parameters are number of fins, dimensionless fin height, dimensionless fin spacing and Fourier 
number. The authors implemented a group method of data handling ANN algorithm. Training and 
testing dataset are different and comes from the CFD model. The proposed GMDH type of ANN 
predicted the thermal behavior of the storage enclosures with high accuracy. The RMSEs of liquid 
fraction and stored energy for test data were 0.0166 and 0.0180 respectively.  

A paraffin wax multi-channel tank with metal foam is studied in [56]. HTF inlet velocity, temperature 
and time are employed as input data while the output is liquid fraction and temperatures. A long short-
term memory back propagation neural network is chosen for the black-box modelling. The training 
and validation dataset are the same. The results show the correctness and reliability of the neural 
network. 

It is also worth mentioning that neural network can be used at the material scale to predict the 
properties of phase change material mixtures [54], to enhance material characterization [43], to 
predict the thermal conductivity of carbon-based nano-enhanced PCMs [50], to predict eutectic salts 
properties [53]. 

4.4.3 Physical sorption heat storage 

A high-energy-density reactor made with 40 kg of zeolite is studied in [9]. It is an open system. 
Experimental data are covering different ranges of hydration and dehydration temperatures, relative 
humidities and flow rates. The calculated quantity of interest is the outlet temperature while the input 
are the inlet temperature, flowrate and relative humidity. A recurrent neural network is chosen and 
implemented with MATLAB Deep Learning Toolbox. The results show that the model can predict the 
temperature evolution with a good agreement (RMSE lower than 3 K for a temperature increase of 90 
K to 40 K). It is worth mentioning that, once trained, the calculation is nearly instantaneous while the 
physical model of the same system requires several hours! 

The field of sorption cooling is also interesting to mention as the physical phenomena are identical to 
heat storage. A recent study from [27] addresses the use of neural networks for predicting the 
performance of solid desiccant cooling systems. Concerning sorption chillers, [20] developed different 
neural network models to predict the performance of different sorption chillers. Similarly, [26] studied 

https://www.sciencedirect.com/topics/engineering/perceptron
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a solar-based absorption chiller cooling system, as well as in [44]. 

It is also worth mentioning that neural network can be used at the material scale to predict the 
properties of sorption material mixtures [4]. 

4.4.4 Chemical sorption heat storage 

A study on a potassium carbonate (K2CO3) based complete open heat storage system was conducted 
in [46]. The experiments are conducted with the aim to evaluate the neural networks model under 
events that the sorption reactor could experience: temperature step, concentration step and real 
conditions. The model is designed to predict the state of charge and reactor outlet temperature 
evolution given the inlet reactor temperature and water vapor concentration. A model based on two 
neural networks architectures, a nonlinear autoregressive neural network with exogenous inputs for 
the prediction of the state of charge and a feedforward neural network for the prediction of the outlet 
temperature. The need of two different autoregressive architectures is justified by the inputs required 
to estimate the state of charge and outlet temperature. The model demonstrated good capabilities in 
predicting the dynamic evolution of the outputs for several hydration and dehydration tests, with 
mean squared error estimators for the state of charge and outlet temperature below 2 10−3 and 50 °C 
respectively. 

It is also worth mentioning that ML can be used at the material scale to predict the properties of 
materials [51]. 

4.5 Global analysis 

The number of existing ML algorithms is huge as hinted in section 4.3. but only a few algorithms are 
used in energy storage modelling (see Table 4.1). Two main points come to mind when observing this 
table. Firstly, most of the reviewed works rely on feed-forward neural networks (mainly multi-layer 
perceptrons). Secondly, all but one trained networks are shallow with at most 3 hidden layers. 

Regarding the first point, the situation makes sense because most of the desired outputs in these 
studies are time-independent quantities. However a closer inspection shows that these quantities of 
interest are most often end values of inherently time-dependent variables. Concerning the second 
point, it seems that the modelling goals are usually modest enough for a simple (or even simplistic) 
architecture to perform in a quite satisfactory manner. One possible explanation for this situation is 
the common use of general ML toolboxes by non-specialists which leads more than often to default 
choices in terms of algorithms and architectures. The failure for some authors to follow sound training 
protocols, such as the absence of validation data, speaks in favour of this explanation. 

We therefore trust there’s ample room for improvement by exploring the vast number of well-
acknowledged ML algorithms as well as deep learning approaches which are now accessible even to 
personal computers. As mentioned before, energy storage systems are inherently time-dependent. 
Hence, instead of focusing on some fixed characteristics, it would be beneficial to conceive ANNs as 
digital twins reproducing as much as possible of the behaviour of the storage system. Although 
challenging, approaches to tackle these challenges are already at hand. Beside other algorithms, 
recurrent neural networks are especially well-suited for such modelling task. RNNs are particularly 
effective for handling sequential data like time series due to their ability to retain contextual 
information through recurrent connections. Constructing a recurrent neural network from raw time 
series data is a multi-step process that involves data preprocessing, model architecture design, training, 
and evaluation. Therefore the implementation of a RNN requires significantly more care than for a 



 

 

 

ES TCP Final Report Task 37 93 

 

 

simple perceptron 

To exemplify our last remark, we summarize below the recommended steps to create a RNN: 

• Data Preprocessing: The first step is to prepare the raw time series data for input into the RNN. 

This involves tasks like data cleaning, normalization, and splitting into training, validation, and test 

sets. Normalization is essential to scale the data within a certain range to improve convergence 

during training. 

• Data Representation: Time series data is often represented as a sequence of values over time. 

Depending on the complexity of the data and the task at hand, one might choose a univariate 

(single feature) or multivariate (multiple features) representation. 

• Sequence Creation: The time series data needs to be transformed into sequences that the RNN 

can process. This is done by creating overlapping windows of data points with a certain sequence 

length.  

• Feature Engineering: In addition to the raw data, one might want to include additional features or 

lagged values as inputs to enhance the model's performance. These could capture trends, seasonal 

patterns, or other relevant information. 

• Model Architecture Design: Designing the RNN architecture is a critical step. Usual options include 

Simple RNN, LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit). LSTMs and GRUs 

are popular choices due to their ability to handle long-range dependencies and mitigate the 

vanishing gradient problem. 

• Model Configuration: Set the hyperparameters of the RNN, including the number of hidden units, 

the number of layers, dropout rates (to prevent overfitting), and the activation functions. The 

output layer's configuration will depend on the specific task – regression, classification, or 

forecasting. 

• Model Compilation: Compile the RNN by specifying the loss function, optimization algorithm (e.g., 

Adam, RMSProp), and evaluation metrics. The loss function depends on the task: Mean Squared 

Error (MSE) for regression, and categorical or binary cross-entropy for classification. 

• Training: Train the RNN using the training data sequences. During training, the model's parameters 

are adjusted to minimize the chosen loss function. Monitor the validation loss to detect overfitting 

and make adjustments accordingly. 

• Evaluation: Once the training is complete, evaluate the RNN's performance on the test set. 

Calculate appropriate metrics such as Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), or accuracy, depending on the task. 

• Fine-Tuning: Depending on the evaluation results, one might need to fine-tune the model. This 

could involve adjusting hyperparameters, adding regularization, modifying the architecture, or 

revisiting data preprocessing steps. 

• Prediction and Visualization: Use the trained RNN to make predictions on new, unseen time series 

data. Visualize the model's predictions against the ground truth to assess its effectiveness in 

capturing patterns and trends. 
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Table 4.1: Summary of ANN algorithm used in the bibliography 

Ref Type Algorithm Nb Layers Remarks 

Kalogirou et al., 
1999 [29] 

sensible FNN 3 hidden slabs of 
18 neurons each 

Justif. by works of 
the authors 

Géczy-Víg and 
Farkas, 2010 [21] 

sensible Multi-layer-
perceptron 

2 layers of 8 
neurons 

Algorithm 
justification 
Hocaoğlu et al., 
2008 [24] 

Yaïci and Entchev, 
2014 [58] 

sensible Multi-layer-
perceptron 

1 layer of 20 
neurons each 

No justification 

Benzaama et al., 
2022 [2] 

sensible LSTM ? No justification 

Lee et al., 2022 
[34] 

sensible ? 2 hidden layers of 
30 neurons each 

No justification 

Chen et al., 2023 
[3] 

sensible Physics-informed 
Neural Networks 

2 hidden layers of 
64 neurons each 

Wang and Hong, 
2020 [55] 

Cox et al., 2019 
[5] 

sensible FNN 2 hidden layers  ? 

Ermis et al., 2007 
[17] 

latent FNN 2 hidden layers of 
8, 13 and 18 
hidden neurons 

Sablani et al., 
2005 [45] 

Ghani et al., 2018 
[22] 

latent Multi-layer-
perceptron 

3 hidden layers of 
11 hidden 
neurons 

Medsker, 2000 
[37] 

Fadaei et al., 
2018b [19] 

latent Multi-layer-
perceptron 

2 hidden layers of 
4 and 5 neurons 
respectively 

? 

Rajesh and 
Mekala, 2023 [41] 

latent Manta Ray 
Foraging 
Optimization 
algorithm 

2 hidden layers of 
30 hidden 
neurons 

Karaci et al., 2019 
[30] 

El-Sawi et al., 
2014 [14] 

latent FNN group 
method of data 
handling 

? ? 

Bagheri-Esfeh et 
al., 2020 [1] 

latent FNN group 
method of data 
handling 

2 hidden layers Kumar et al., 
2013 [31] 

Cui et al., 2022 [6] latent Multi-layer-
perceptron 

1 hidden layer of 
10/12 hidden 
neurons 

? 
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Eldokaishi et al., 
2022 [12] 

latent FNN 3 hidden layers of 
50 hidden 
neurons 

Svozil et al., 1997 
[49] 

Darvishvand et 
al., 2022 [8] 

latent FNN group 
method of data 
handling 

? Ebtehaj et al., 
2015 [11] 

Xiao et al., 2023 
[56] 

latent LSTM 
Backpropagation 

? Xu et al., 2022 
[57] 

Delmarre et al., 
2021 [9] 

physical sorption LSTM 200 hidden layers Hochreiter and 
Schmidhuber, 
1997 [25] 

Scapino et al., 
2019 [46] 

chemical sorption nonlinear 
autoregressive 
network & FNN 

SOC: 1 layer and 
10/20 neurons; 
outlet 
temperature 3/4 
layers 25/7 
neurons 

Bibliography 

 

4.6 Main conclusions 

• The current practise in energy storage modelling is far from unleashing the potential of 

contemporary machine learning. This situation is probably caused by the lack of the expertise 

needed to implement state-of-the-art ML techniques in the energy storage community. This time, 

we did not have enough data, but there is a credible expectation of actual benefits in subsequent 

practical application coming from trying these techniques. 

• Few works have been developed for physical and chemical sorption while this technology is 

promising and requires an exact control of the system. Moreover, white-box approaches to this 

kind of systems are often limited since they lead to stiff differential systems, whereas ANN are 

extremely well suited to handle highly non-linear problems. 

• ML is usually used for model prediction while many uses should be also regarded like real-time 

self-learning, anomaly detection, data-mining… 

• More information is needed to match the system modelled and the ML algorithm. 
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5 Subtask C: Smart Design/Integration Methodology for 
Energy Storage System 

Contributors: Samira Rahnama, Mahmood Khatibi, Alessandro Maccarini, Alireza Afshari, Mahmoud 
Murtala Farouq, Parham Mirzaei Ahranjani, Enrico Fabrizio, Maria Ferrara, Dragos-Ioan Bogatu, Jun 
Shinoda, Bjarne W. Olesen, Ongun B. Kazanci, Elaheh Bazdar, Fuzhan Nasiri, Chao Zeng, Xu Wei, 
Fariborz Haghighat, Alireza Afshari 

 

5.1 Abstract 

Recent research studies have focused on the optimal design of Thermal Energy Storage (TES) systems 
for different plants and processes, utilizing advanced optimization techniques. There are a wide range 
of TES technologies that can be integrated into a variety of thermal applications. Each TES technology 
has its own technical and economic characteristics that make it essentially suitable for a specific 
application. Identifying important factors and then matching an application with the most appropriate 
TES system is still a challenging issue. Subtask C discusses the challenges in identifying the most 
appropriate Thermal Energy Storage (TES) system for a specific application due to the technical and 
economic characteristics of each TES technology. A seven-step design methodology is proposed that 
can guide the process from describing the thermal process to defining the TES geometry based on the 
requirements and constraints of the thermal application. The steps in the proposed methodology 
include specifying the thermal process, thermal demand, storage technology, integration parameters, 
key performance indicators, optimization method, and optimization tools. The proposed methodology 
is implemented in seven different case studies to demonstrate its effectiveness in identifying the most 
appropriate TES system for a specific application. Although the case studies involve various types of 
applications with both sensible and latent thermal energy storage systems, the proposed design 
procedure is applicable. The design steps proposed in this subtask can serve as a foundation for 
developing a systematic approach for designing TES systems in future works. 

5.2 Introduction 

Buildings account for 30% of total global final energy use and 27% of all global greenhouse gas 
emissions [1]. Most of this energy use and greenhouse gas (GHG) emissions are related to the 
operation of heating and cooling systems [2], which play a vital role in buildings as they maintain a 
satisfactory indoor climate for the occupants.  

One way to reduce the environmental impact of buildings is to integrate renewable energy sources 
into heating and cooling building systems. However, renewable energy sources are often intermittent, 
creating a time delay between energy production and demand. For example, technology such as solar 
collectors are only productive during the day, when domestic heating demand is at its lowest. 

Thermal energy storage (TES) is a way of addressing the mismatch in supply and demand between 
renewable resources and energy demand. TES is a technology in which thermal energy is stored as a 
change in internal energy of a material to be used at a later time for heating and cooling applications 
[3]. Among the advantages of TES are the increase in overall efficiency and better reliability when 
applied in an energy system, leading to reductions in investment and operating costs, as well as 
reductions in GHG emissions [4] [5]. As shown in Figure 5.1, TES technologies are typically classified in 
three categories: sensible, latent, and thermo-chemical [6]. 
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In sensible heat storage, thermal energy is stored by varying the temperature of the storage medium. 
In latent heat storage system, heat is absorbed or released in correspondence of phase change in the 
storage medium. Finally, in thermo-chemical storage, thermal energy is stored and retrieved by 
breaking and reforming molecular bonds in reversible chemical reactions [3]. Each thermal energy 
storage technology has its advantages and disadvantages. Sensible TES is simple and widely 
demonstrated, but it suffers from low energy storage density. On the other hand, thermo-chemical 
TES can reach high energy storage density, but this technology is still under development due to 
technical challenges [7]. 

A lot of work is being carried out in the field of thermal energy storage for buildings and several review 
articles have been published on the subject [8][9]. The integration of TES in building systems can bring 
benefits in terms of energy efficiency, increased contribution of renewable energy and peak load 
reduction. As shown in Figure 5.2, TES in buildings can be divided into two major categories, passive 
and active storage. For passive storage, the driving force for charging and discharging is only the 
temperature difference between the store and the surroundings. In the case of an active storage, the 
charging and discharging occurs with active help from pumps or fans [10]. 

As shown in Figure 5.2, various technologies of TES systems with different thermal properties can be 
utilized in buildings. On the other hand, there are various types of building requiring the integration of 
TES systems for different purposes e.g. increasing energy efficiency or reducing energy costs and GHG 
emissions. Hence, an effective design of TES system, i.e. choosing a proper TES technology with a 
proper size which meets the application-specific requirements can be a complex and challenging task 
and it depends on several factors. 

In a simple traditional design, the size of the storage system can be calculated for the worst-case 
scenario. However, this leads to an oversized estimation of the needed capacity. Optimal design of TES 
systems for various plants and processes using advanced optimization techniques is a subject of many 
recent research studies and has received considerable attention in the literature. 

 

Figure 5.1: Classification of thermal storage technologies [6] 
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Figure 5.2: Classification of TES in buildings 

The optimal design of TES can be categorized according to the level at which the optimization occurs. 
Some of the studies only focus on the optimization of the storage design either at component level or 
at system level, whereas other studies also consider the optimization of the plant operation, where 
the storage system will be integrated. Depending on the level of design, there are different 
requirements that should be considered. For instance, in [11] TES design considerations for a solar 
power plant at different levels have been reviewed. At the component level, the focus of the design is 
on the basic components of the TES, whereas at the system level, the integration of storage 
components with other systems e.g., pumps, heat exchanger and control systems should be 
considered. The plant level design focuses on the plant requirements, e.g., improving annual capacity 
factor of a solar power plant. 

When the integration of the TES into a plant is considered, the optimal design can be categorized 
according to the application, whether it is a retrofit application or a greenfield application [12]. The 
former examines the integration of the TES into a plant which already exists, whereas the latter is 
about the design of TES in parallel with the rest of the plant from the beginning of the plant design. 
Depending on whether it is a retrofit or a greenfield application, the optimal TES technology can be 
different for that application. For instance, TES systems integrated in the building structure such as 
walls, floor and ceiling might better fit with greenfield applications. Figure 5.3 shows a general 
classification of TES design methodology. 
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Figure 5.3: Classification of Thermal Energy Storage Systems Design 

Looking at the literature of the past 20 years, Phase Change Material (PCM) is one of the most-common 
TES technologies designed for different applications. For instance, in a study back to 2004, a semi-
empirical thermal model was developed that can be integrated into a commercial software package 
for design optimization of a hybrid heat sink TES with a PCM unit [13]. 

In recent studies, Li et. al. in [14] proposed a multi-objective optimization approach for designing a 
PCM thermal energy storage system, where the proposed approach was illustrated for optimizing an 
outdoor swimming pool heating system with PCM storage. 

In another example [15], focusing on the design optimization at the system level, the impact of inlet 
water temperature and flow rate on the design of a water based active PCM storage was 
experimentally investigated. 

Via a parametric study, an optimum design of a PCM storage system comprising PCM units embedded 
with a capillary pipe system was proposed in [16] for space cooling of nearly zero-energy residential 
buildings. The study showed the main parameters which affect the cooling performance, and the 
energy use of the system are PCM layer thickness, number of parallel pipes, diameter of pipe, night 
cooling duration, cooling water inlet temperature and water velocity. 

The study in [17], was also examined the design optimization of an active cool PCM storage system 
integrated with HVAC systems. Employing a model-based design approach, this study optimized the 
storage capacity to maximize the cost-saving potential that can be achieved from peak load 
management and participation in demand response programs. 

Minimizing the phase change time and maximizing the stored energy of a finned latent heat thermal 
energy storage system were the objectives of the design optimization in [18], where the volume 
fraction of fins, the number of fins and the dimensionless fin length were considered as design 
variables in a pareto optimal design scheme. 

Another common TES technology designed for many applications is the building-integrated thermal 
energy storage systems, that is the use of thermally massive building fabrics e.g., concrete slabs or 
masonry block walls either in a passive or an active design. In a two-series publication [19] [20] , Bastien 
and Athienitis compared several design concepts for the passive design of thermally massive elements 
in buildings and presented a design methodology for sizing such storage systems in solaria and 
greenhouses. According to [19], identifying the design objective is the most important factor that 
should be considered in the first place when designing a passive TES system. Depending on the design 
objective, different materials and configurations can be appropriate, e.g., massive exterior wall or 
direct-gain/isolated-gain space. This study first reviewed several design objectives such as reducing 
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indoor temperature swings, reducing the space heating and cooling energy consumption or delaying 
the peak solar gain effect. Then, the study selected the most appropriate design concepts for isolate-
gain applications, such as daily average operative temperature swing and minimum and maximum 
operative temperature. In the second series [20], six different configurations of solaria were modeled 
with frequency response and finite difference thermal network modeling approaches to investigate 
the impact of different design variables e.g., TES material or varying thermal resistance of the 
insulation layer on the selected design objectives. Based on analyses of the thorough simulation results, 
a design methodology in 11 steps has been provided, together with recommendations to adopt the 
appropriate size of TES in different configurations and for satisfying different design objectives. 

In another study [21], a design procedure has been provided for the active building-integrated thermal 
energy storage systems i.e., when passive elements embody a mechanical charging system such as 
hydronic systems for exchanging heat with the storage media. 

As seen, a wide range of TES technologies are available that can be integrated into a variety of thermal 
applications. Each TES technology has its own technical and economic characteristics that make it 
essentially suitable for a specific application. Identifying important factors and then matching an 
application with the most appropriate TES system is still a challenging issue. 

A group of papers merely optimizes the thermal performance of TES systems [22][23][24][25]. 
However, the requirements for TES systems differ significantly depending on the chosen application. 
As a result, it is essential to develop design methods that allow a TES system to meet the specific needs 
of an individual thermal application. In this regard, a second group of papers optimizes the overall 
performance of the application in which the TES system is integrated [26][27][28]. Nevertheless, a 
deep knowledge of the process under analysis is required for the second group and they rely on 
complex simulations that are highly time-consuming. 

Current barriers to commercial deployment of TES systems include their complex design procedure 
that should address the specificities of both the TES system and the application under consideration. 
Indeed, there is a gap between the two approaches that should be filled by fast and easy to apply 
methodologies capable of adapting the thermal characteristics of a TES system to the needs of the 
thermal application. The major gap is to develop a set of methodologies to guide the process from 
description of the thermal process to defining TES geometry based on the requirements and 
constraints of thermal application [29]. In addition, developing systematic evaluation procedures for 
TES systems integrated in different applications is essential to advance their deployment [12]. Gibb et. 
al. in [12] propose a systematic methodology in three concrete steps for characterizing and evaluating 
thermal energy storage systems in different applications. The main step in the proposed methodology 
is the analysis of the thermal process which includes the structured collection and analysis of process 
information. In the next step, the system boundary, i.e. the point of contact between the fluid and the 
thermal sinks/sources as well as technical properties of the system should be specified. Finally, via 
determination of relevant KPIs, the benefit of the thermal energy storage system to the process is 
investigated in the last step. Two case studies, a concentrating solar power and a cogeneration power 
plant were evaluated using the proposed methodology in this research. 

Taking a broader view, TES systems are a part of a wider group of flexibility alternatives. Considering 
the growing number of factors which are increasing system complexity, there is still much room for 
design of integrated energy systems as well as development of simplified building/district modeling 
tools and system optimization techniques. For example, systematic approaches need to be adopted in 
order to identify the appropriate combination of infrastructure and market signals. In this way, 
commercial models of TES operation as well as more efficient use cases can be developed [30]. 
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5.3 Smart Design Methodology 

Literature review reveals a lack of systematic approach for design and integration of thermal energy 
storage systems into buildings. To our best knowledge, the only study which addresses this topic is the 
study conducted by Campos-Celador et. al [29]. They propose a general methodology divided into four 
steps for deign of thermal energy storage systems. In the first step, the thermal process should be 
characterized by its nominal parameters i.e., temperature and mass flow rate of the heat transfer fluid. 
Design parameters are then specified in the second step. Likewise, the thermal energy storage 
technology should be characterized in the third step that meets the specifications and constraints 
imposed by the first two steps. The final step is the determination of the thermal energy storage design. 
The proposed methodology was applied to a domestic micro-cogeneration application in this research. 
As emphasized by the authors, the simple methodology presented in this research can be used as 
starting point for design of TES and a more detailed analysis, particularly regarding the interaction 
between the TES and the application should be considered. Inspired by this research study, the 
presented methodology is further developed in this Subtask and then implemented on a few case 
studies. The design methodology consists of the following seven steps: 

Step 1: Specification of the thermal process 

Step 2: Specification of the thermal demand 

Step 3: Specification of storage technology 

Step 4: Specification of integration parameters 

Step 5: Specification of key performance indicators 

Step 6: Specification of optimization method 

Step 7: Specification of optimization tools 

Inputs to the proposed design methodology are the parameters which characterize the thermal 
properties of the heat transfer fluid, namely, nominal upper and lower temperature and the nominal 
mass flow rate. In addition, in relation to interaction between the TES system and the application, 
nominal generation and demand as well as the physical available space should be given as input to the 
design methodology. These parameters can have an impact on the TES technology chosen for a specific 
application. In the following of this section, each step of the design methodology is explained. 

5.3.1 Specification of the thermal process 

To characterize a thermal process, three variables related to the heat transfer fluid (HTF) can be used: 
upper working temperature, lower working temperature and mass flow. In normal operation, the 
instantaneous values of such variables vary over time, and they typically oscillate around some 
nominal design values. Therefore, the following three nominal parameters, that is, nominal upper 
temperature (Tup), nominal lower temperature (Tlow) and nominal mass flow (𝑚̇) can be used to 
characterize any thermal process. Together with the thermophysical properties of the heat transfer 
fluid, these three parameters will constrain the TES technology and act as inputs for the design 
methodology. 
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5.3.2 Specification of the thermal demand 

The thermal demand and resource availability curves can be used to derive a few important 
parameters for designing a TES system. It is more likely that thermal demand and resource availability 
curves fluctuate from season to season or, or even, from day to day. A single pair of curves 
demonstrating the thermal demand and resource availability is essential for design purposes. One 
option is to exploit average conditions that represent the nominal behavior of the process. 
Alternatively, designers can apply the most demanding conditions corresponding to the peak 
conditions of the TES system. The choice is dependent on the objective that is behind the integration 
of the TES system, and it significantly affects the expected benefits of the TES integration. The 
important design parameters for the TES system are as follows: 

• Charging time, i.e. the time availability for charging (tc), 

• Discharging time, i.e. time availability for discharging (td) 

• The storage capacity (Cap) 

Desirable charging and discharging thermal power can be calculated using the above parameters. 

5.3.3 Specification of storage technology 

TES are commonly classified by the nature of the physical contact between the storage medium and 
the HTF. Following this classification, TES can be divided into direct-contact TES and indirect-contact 
TES. Direct-contact TES systems are those where the HTF is, at the same time, the storage medium. On 
the other hand, indirect-contact TES systems present a container or heat exchanger that separates the 
storage medium and the HTF. One of the most common typologies of direct-contact TES is sensible 
heat TES using water as HTF, which is the working principle of storage tanks. In this case, the amount 
of heat stored depends on the amount of the storage material, specific heat of the medium and the 
difference between upper and lower nominal temperature. Charging and discharging time 
corresponds to the time required to fill or empty the volume of the tank. Typically, a correction factor 
is introduced to consider the mixing effect. 

In indirect-contact TES systems, the heat transfer is based on thermal processes between the storage 
medium and the HTF, which differs from direct-contact TES, where the heat transfer is based on mass 
transfer. The capacity of indirect-contact TES technology is generally defined by a mean enthalpy 
variation for the storage medium added to the sensible effect of the components involved in the 
thermal process. The time required for storing and releasing the heat can be defined as a function of 
different operating parameters and design characteristics such as mass flow rate, nominal 
temperatures, geometry etc. Other approaches in literature introduce the concept of dimensionless 
time. 

5.3.4 Specification of integration parameters 

Along with the design parameters, there are parameters which are related to the integration of TES 
system within the thermal process. For instance, spatial parameters such as available volume (Vmax) or 
available area (Amax) address opportunities or problems regarding existing space, distances between 
process parts, obstacles, and available infrastructure. 

In addition, arrangement of the TES system boundary plays an important role in evaluating TES 
integration. It is defined as the point of contact between the thermal sink as well as thermal source 
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and the fluid streams. All components such as heat exchangers which are required for linking the TES 
system to the process are included in this definition. 

5.3.5 Specification of key performance indicators (KPIs) 

Specification of optimization strategy for integration of TES systems is dependent on defining key 
performance indicators (KPIs). Due to the diverse list of applications in which TES systems can be 
integrated, flexibility in KPIs definition is an essential aspect. In this regard, Giacone and Mancò 
investigated the necessity of a clear and methodical framework to identify the most relevant KPIs for 
integration of TES systems [31]. The identified KPIs can address a variety of criteria including energy 
efficiency, thermal comfort, reliability, cost, sustainability, and flexibility. Usually there is more than 
one KPI that should be optimized. Since these objectives are generally in conflict with each other, 
different technologies and configurations might be exploited. When designers face with such multi-
objective optimization problems, a weighted average of KPIs is optimized as an objective function in 
some cases. However, previous knowledge of the system is required to select the weights. Also, tuning 
the weights is time-consuming. As a result, Pareto approach which leads to a set of non-dominated 
solutions called Pareto frontier is applied in some other studies. 

5.3.6 Specification of optimization method 

If the constraints and objective function of an optimization problem are a linear function of decision 
variables, it is called linear programing (LP). Otherwise, the problem is called nonlinear programming 
(NLP). Mixed-integer linear programing (MILP) is applied when there are binary or integer decision 
variables such as the status (on/off) of an equipment.  

Typical deterministic gradient-based optimization methods such as Newton, Quasi-Newton and 
Steepest Descent are effective only for convex and smooth problems. Consequently, stochastic 
metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) which 
are population-based are more effective. 

5.3.7 Specification of optimization tools 

Optimization tools can be classified into two main groups: stand-alone optimization packages and 
simulation-based optimization tools. The most frequently stand-alone optimization packages 
mentioned in literature are GenOpt®, MATLAB®, modeFrontier® and Topgui®. The most mentioned 
two simulation-based optimization tools in literature that attempt to merge both optimization and 
simulation techniques are BeOpt™ and Opt-E-Plus™. 

5.4 Case Studies 

5.4.1 Earthbag-PCM integrated walls for temporary housings 

Earthbag temporary housings are a viable solution to quickly accommodate a massive number of 
relocated people due to natural disasters, coercive movements, civil wars, insurgency, etc. these 
houses, nonetheless, faces a poor indoor condition, especially in regions with harsh climatic conditions. 
To enhance their indoor condition, thus, the integration of PCM to the earthbag units is proposed as a 
potential technique. Hence, this case study reports the development, modelling, and optimization of 
earthbag units for such applications. 

Steps 1 and 2: Specification of the thermal process and thermal demand 
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In this case study, 24 earthbag unit blocks were fabricated to construct a earthbag test wall while each 
unit has a mixture of 30% clay and 70% well-graded soil sand [32]. The soil and the microencapsulated 
PCM (inertek26) and PCM composited were mixed at 2.2% of the composition of the entire unit block 
mixture. Water was added to the mixture up to the point where 10% moisture was achieved [33]. In 
a hot climate such as Nigeria, the PCM with a higher transition temperature option is preferable to 
reduce high temperatures [34]. The microencapsulated PCM and formed PCM composite are having 
26 and 31 phase transition temperature. The heat storage capacity of the selected PCM are 182 kJ/kg 
and 215 kJ/kg for A31 and Inertek26. The selection process considered the comfort zone of Kano state, 
the region for the experiment, which was determined to be between 23℃ and 32℃ [35]. 

 

Figure 5.4: (a) Test walls  prototype in climatic chamber (b) Schematic layout of thermocouples 
and heat flux at outer and inner surface of walls (c) Top elevation of experimental arrangement 

 

Step 3: Specification of storage technology 

To assess the behaviour of PCM in an earthbag-building model, three identical real wall-scale 
prototypes were built, including Wall 1 (baseline) without PCM, Wall 2 with PCM encapsulated in 
expanded graphite and perlite (WA31) and Wall 3 with powdered PCM (WInk26). As shown in Figure 
5.4, the prototype walls are then placed in a climate-controlled thermal chamber to simulate an indoor 
space of an earthbag building. The climate chamber was programmed to replicate summer climatic 
conditions in Kano, Nigeria. Additionally, k-type thermocouples (with an accuracy of 0.05℃) were 
positioned at the test wall's inner and outer surfaces, and two heat flux sensors were installed on the 
wall to measure heat flow rates. Figure 5.4 displays a 3D sketch of the wall used for the simulation to 
validate the experimental work. 
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Step 4: Specification of integration parameters 

To meets the desired requirements for designing PCM-Earthbag walls, 5 parameters were considered, 
as presented in Table 5.1, such as the type and quantity of PCM material used, the size and shape of 
the bags, the wall size and thickness, and the insulation materials thickness. 

Table 5.1: Parameters and their properties 

Component Thickness  
(𝒎)             

Area 

(𝐦𝟐) 

Number of 
block/walls 

Quantity 
(𝑲𝒈) 

Conductivity  

(W/ 𝐦. 𝐊)             

Density  

 (𝐤𝐠/𝒎𝟑)         

Specific heat  

 (𝐉/𝐤𝐠 . 𝐊)           

Earthbag block  0.25 0.08 10     

Earthbag wall  0.25 0.64      

A31 0.03   2.2 %w of 
EB* 

0.2 680 2220 

Inertek26 0.03   2.2 %w of 
EB* 

0.21 790 1071 

 Floor (EPS 
expanded perlite) 

0.075    1.15 1900 950 

slab (EPS 
expanded perlite) 

0.075    1.9 2300 1650 

* Means 2.2% of total quantities of materials used in a single bag of earthbag unit block 

Step 5: Specification of key performance indicators (KPIs) 

In this investigation, two principal performance measures were considered, including (1) the inner 
surface temperature reduction and (2) the viable PCM charging and discharging duration. The goal was 
to maximize the thermal comfort resulted from the earthbag unit walls. The results of this analysis 
suggest that the integration of PCM into earthbag walls can help to significantly reduce the surface 
temperature, with the WA31 inner surface wall decreasing by up to 3.1℃ when using a 6cm PCM layer. 
The best thermal comfort results were found using an optimised model with a PCM layer of only 1cm. 
The inner surface temperature reduction was found to be 5.82℃ with good charging and discharging 
performance. 

Step 6: Specification of optimization method  

Genetic algorithm (GA) is implemented in this case study to optimise the average inner surface 
temperature of the earthbag building model to find the minimum average surface wall temperature 
at which the indoor of the earthbag model to fall within the thermal comfort zone of Kano state, 
Nigeria (selected state of the experiment). The parameters considered include the earthbag wall 
thickness (EGT), building orientation (BO), PCM layer thickness (PLT), PCM conductivity (PC), and PCM 
specific heat (PSH). Therefore, to optimise the performance of the earthbag-PCM units, 230 sets of 
unique simulation inputs, varying the independent operating variables, were obtained, and the 
corresponding output of each simulation in terms of average inner surface temperature was used for 
a multivariable regression analysis (MRA). 

Step 7: Specification of optimization tools 

In this case study, the equation of the ANOVA developed in excel data analysis is used as the objective 
function for GA in MATLAB software optimization tool. Once the correlation between the independent 
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variables has been determined as described above, the GA is used to optimise them due to their 
efficiency in dealing with multivariable optimisation problems. The objective is to minimise the 
"Average Inner surface temperature" variable. Constraints related to the problem are also imposed, 
with each variable's lower and upper limits given in Table 5.2. Table 5.3 details the GA parameters 
used in the optimisation model. After this, the GA program is executed with the specified parameters 
and variable constraints. Finally, the optimised values of the variables are extracted and presented in 
Table 5.4. Once the optimisation was done with the genetic algorithm as outlined before, the 
optimised values listed in Table 5.4 were utilised to perform the final simulation with the EnergyPlus 
model. This simulation was then compared to the parametric analysis of the original design. 

Table 5.2: Variable Bound for the key building design parameters 

S/N Variables (mm) Bound  

1 Earthbag wall thickness (EGT) 200 ≤ EGT≤ 450 

2 Building orientation(BO) 0 ≤ BO≤ 90 

3 PCM layer thickness (PLT) 10 ≤ PLT≤ 70 

 

Table 5.3: Genetic Algorithm parameters for the present model 

S/N GA parameters  Value  

1 Population size 50 

2 Number of iterations 100 

3 Number of bits per variable 8 

4 Crossover probability 0.8 

5 Mutation probability 0.05 

 

Table 5.4: Designed model and Optimised values of the variable after analysis with GA and 
parametric analysis 

S/N Variables  Designed 
model 

Parametric 
analysis  

Optimised value 
(GA) 

1 Earthbag wall thickness (mm) 250 250 450 

2 Building orientation (º) 0  90 

3 PCM layer thickness (mm) 10 10-70 10 

Results and Conclusion on case study 5.4.1 

The case study's findings as shown in Table 5.5 demonstrate that introducing PCM into earthbag walls 
can lower surface temperatures by up to 1.92℃ and 2.50℃ for WA31 and WInk26, respectively. 
However, WInk26 with Inertek26 PCM proves ineffective due to surface temperatures consistently 
exceeding the PCM's melting point during the day, hampering charging and discharging cycles. On the 
other hand, A31 PCM exhibits a more favorable temperature profile, with a 19-hour charging and 3-
hour discharging cycle, leading to its selection for further analysis. Parametric examination reveals that 
a 6cm PCM layer with 16 hours of charging and 8 hours of discharging lowers the inner surface 
temperature of WA31 by 3.1℃. Interestingly, the optimized model suggests that optimal thermal 
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comfort results can be achieved with just a 1cm PCM layer. This optimized approach reduces the inner 
surface temperature by 5.82℃, demonstrating desirable outcomes for a 13-hour charging and 11-hour 
discharging cycle as shown in Table 5.6. 

Table 5.5: Inner surface temperature reduction and charging and discharging results before 
optimization 

Earthbag wall Temperature reduction 

(ºC) 

Charging (hr) Discharging (hr) 

WInk26_3cm layer 1.92℃  24 0 

WA31_3cm layer 2.50℃ 19 3 

WA31_6cm layer 3.1℃ 16 8 

 

Table 5.6: Optimized result for inner surface temperature reduction and charging and discharging 

Earthbag wall Temperature reduction 

(ºC) 

Charging (hr) Discharging (hr) 

WA31_6cm layer 5.82℃ 13 11 

 

5.4.2 The feasibility study and design optimization of a solar-assisted 
geothermal heat pump for a real restaurant building in a mountain 
site 

The system in this case study includes six thermal storages (see Figure 5.5 for its initial design 
configuration): three on the use-side storages (low temperature, high temperature, DHW) and three 
on the source-side (integration hot storage, Exhaust DHW storage, Ground for geothermal field). Given 
the total seasonal thermal energy demand resulting from the calibrated dynamic simulation of the 
building model, the focus of the design activity presented here is on the three source-side storages. 
The objective is to find their optimal integration for increasing the temperature at the source side of 
the heat pump and optimizing its coefficient of performance [36]. 
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Figure 5.5: Schematics of demand side and supply side loops of the system 

Step 1: Specification of the thermal process. 

Regarding the characterization of the thermal process, mass flow rates of the water acting as HTF were 
already fixed in the initial design considering the available circulating pumps of the different loops and 
the nominal flow rates expected at the source side of the heat pump. However, considering the 
unpredictability of the different heat sources feeding the different loops (exhaust DHW depends on 
the building use and the solar source is subject to weather conditions), the upper and lower working 
temperatures were not considered as inputs. Instead, they were treated as outputs of the design 
optimization activity. The appropriate constraints were set through control logics to ensure the 
automatic shut off of a loop when temperature levels were too low to provide a positive contribution. 

Step 2: Specification of the thermal demand 

The storage design in this case study relies on detailed thermal demand and resource availability 
curves derived from a detailed dynamic simulation calibrated on real monitored weather data at the 
building site. Rather than focusing on peak or average conditions, the design approach aims at 
exploiting such detailed dynamics looking for the TES optimal sizing and system integration that 
optimizes the seasonal performance of the overall system. 

Therefore, coherently with the characterization of the thermal process, the design parameters such as 
the charging and discharging time and the related thermal power and storage capacity, were not fixed 
but were allowed to vary in relation to the variation of optimization parameters. 

Step 3: specification of storage technology 

The project boundaries imposed the type of storage technology to be used in the system. One is the 
ground field, an indirect-contact TES that relates its storage capacity to the number and depth of 
boreholes, being the ground the storage medium and a water-glycol mix the HTF. The “grey water 
storage” is an underground water tank that is used as indirect-contact TES to store the heat recovered 
from exhaust DHW coming from the use-side, therefore relating its storage performance to its volume 
and the sizing of the heat exchanger between the exhaust DHW (the storage medium) and the water 
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circulating in the exchanger serpentine. The “integration hot storage” is a water tank storage acting as 
an indirect contact TES to integrate and store the heat coming from the three source loops (ground, 
solar and grey water - if and when heat is available, with accurate controls). It is done by means of 
proper sizing of the storage itself and of the heat exchangers. For the two water tanks, the storage 
medium is water and the HTF is water mixed with 40% of glycol. 

Step 4. Specification of integration parameters 

In this case study, integration parameters were specified as optimization parameters, defined with a 
Min-Max variation range and discrete steps for variation in the range (Table 5.7). 

Table 5.7: Optimization parameters 

 Name Optimization parameter description Unit Min Max 
Step 
size 

Spatial 
integration 
parameters 

Ncoll Number of solar thermal collectors [-] 2 30 2 

Nbor Number of geothermal boreholes [-] 2 10 2 

Dbor Depth of boreholes [m] 50 350 25 

STVint Volume of the Integration storage per solar 
collectors’ area 

[l/m2] 40 100 10 

STVgw Volume of the grey water storage [l] 2000 8000 1000 

TES system 
boundary 

parameters 

Ssol 
Surface of the solar heat exchanger 

serpentine in the integration storage 
[m2] 2.0 4.0 0.5 

Sgw,int 
Surface of the grey water heat exchanger 

serpentine in the integration storage 
[m2] 3.0 7.0 0.5 

Sgw 
Surface of the heat exchanger serpentine in 

the grey water storage 
[m2] 3.0 9.0 1 

Regarding spatial integration parameters, the Min and Max volume of both Integration storage and 
DHW storages were set according to available space for installation of the tanks and the solar field, 
also considering detailed constraints regarding the min and max possible ration between the water 
storage volume and the solar field (expressed in l/m2). Also, the dimension of the ground storage, 
generated by the number and the depth of boreholes, was set according to available space for drilling 
in the project site. Regarding the TES system boundary parameters, the surfaces of the different heat 
exchanger serpentines as points of contact between the different loops and the storages were used as 
design parameters, given fixed flow rates of fluids circulating in the different loops. 

Step 5. Specification of key performance indicators (KPIs) 

According to the objective of the case study, the defined KPIs refers to the overall energy efficiency 
and cost performance of the system. The cost-related KPI is the global cost of the system within its 
estimated lifecycle (30 years), following the formulation provided by Standard EN 15459 for economic 
evaluation of energy systems in buildings: 

𝐶𝐺(𝜏, 𝑃) =  𝐶𝐼 +  ∑ [∑ (𝐶𝑎,𝑖(𝑗) ∗ 𝑅𝑑(𝑖)) − 𝑉𝑓,𝜏(𝑗)𝜏
𝑖=1 ]𝐽   [€] (1)  

where 𝐶𝐺(𝜏, 𝑃) represents the global cost relatively to the starting year 𝜏0, considering a number 𝜏 of 
years as the calculation period and the defined set of parameters 𝑃, 𝐶𝐼 is the initial investment cost, 
𝐶𝑎,𝑖(𝑗) is the annual cost for system component j at the year i (including operational energy costs and 
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costs for ordinary or extraordinary maintenance), 𝑅𝑑(𝑖) is the discount rate for year i, 𝑉𝑓,𝜏(𝑗) is the 

final value of component j at the end of the period 𝜏.  

The other KPI is the seasonal performance factor of the system that was defined, as used for 
multipurpose systems [37], as the ratio of the total useful energy output to the total energy expense 
of a system as follows: 

𝑆𝑃𝐹𝑆𝐴𝐺𝐻𝑃 =
Qℎ+𝑄𝑣+𝑄𝐷𝐻𝑊

𝐸𝑒𝑙,𝐻𝑃+𝐸𝑒𝑙,𝑎𝑢𝑥
 [-]  (2) 

where Qℎ, 𝑄𝑣 and 𝑄𝐷𝐻𝑊 are the useful energy outputs for space heating, ventilation and DHW, while 
𝐸𝑒𝑙,𝐻𝑃  and 𝐸𝑒𝑙,𝑎𝑢𝑥  are the electrical energy inputs for the heat pump operation and the auxiliary 

systems (circulation pumps). 

Given these two objectives, the final KPI driving the optimization was defined as a multi-objective 
optimization function as follows 

𝑀𝑂𝐹𝑆𝐴𝐺𝐻𝑃 = 𝑤1
𝐶𝐺−𝐶𝐺,𝑚𝑖𝑛

𝐶𝐺,𝑚𝑎𝑥−𝐶𝐺,𝑚𝑖𝑛
+ 𝑤2

𝑆𝑃𝐹−𝑆𝑃𝐹𝑚𝑎𝑥

𝑆𝑃𝐹𝑚𝑖𝑛−𝑆𝑃𝐹𝑚𝑎𝑥
 [-] (3) 

where MOFSAGHP ∈ [0,1]  and weights w1 and w2 were initially set to 0.5. After running single-
objective optimization for both minimizing and maximizing the two objectives as inputs for eq.(3), the 
weights could be adjusted according to the investors’ preference. 

Steps 6 and 7. Specification of optimization method and tools 

A simulation-based optimization method was used to meet the design objectives. In details, the 
GenOpt® software was used as optimization tool, with a tailored coupling to the detailed system 
dynamic model made in TRNSYS. Given the discrete design space and the non-linearity of objective 
functions, the optimization runs were driven by the metaheuristic population-based PSO algorithm, 
selected in its binary version to deal with a discrete design space. The settings for PSO parameters 
were defined according to preliminary studies devoted to optimization of the algorithm performance 
in solving similar problems [38]. 

Results and discussion on case study 5.4.2 

From the system efficiency point of view, it is shown that the maximum achievable increase of SPF 
with respect to the initial design is around 6%, but at a potential expense of a very high increase of 
global cost (+250%) driven by the high investment cost of boreholes. The adopted multi-objective 
optimization approach allowed identifying a solution leading to nearly optimal SPF but significant 
containment of global cost (-34%), coherently with the investor’s objective of maximizing the overall 
efficiency of the system with a view on global cost over the system lifecycle. 

In details, the higher cost-effectiveness resulted in the solar loop, whose size is maximized, while the 
contribution of the heat recovery from exhausted DHW resulted to be lower than expected, leading to 
reduce the size of its storage. The planned number of boreholes resulted to be enough to increase the 
temperature level of the main loop by up to 5°C without causing unsustainable increase of global cost 
but, in order to avoid degradation of storage capacity of the ground field (resulting from multi-yearly 
simulations of the overall system), in the summer period the solar system must be used for recharging 
the ground field. 
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5.4.3 Macro-encapsulated ceiling panel (MEP) with embedded pipes for 
water circulation 

An active thermal energy storage configuration similar to Thermo active building systems (TABS) 
oriented to all new and retrofit building types was investigated at the Technical University of Denmark 
(DTU) [39]. The PCM was macro-encapsulated in a ceiling panel with embedded pipes for water 
circulation, referred to as MEP. 

The MEP, its operation, and water circuit are shown in Figure 5.6. Its construction ensured a direct 
contact between the PCM and the pipe profile. The MEP was designed to condition the indoor space 
during occupancy by absorbing the cooling load (passive operation). Active water circulation followed 
a rule-based control as a function of the operative temperature (Top) during un-occupied hours, 18:00 
to 08:00, discharging the PCM. However, the MEP could work as a radiant panel if needed during peak 
cooling loads. The piping structure was based on a commercially available product.  

 

Figure 5.6: MEP panel operation principle [39]. (Top: operative temperature). 

Step 1: Specification of the thermal process 

Water, i.e. the heat transfer fluid (HTF), is circulated through the pipes embedded in the PCM. Due to 
the MEP’s configuration, the nominal mass flow rate was determined according to the TABS design 
procedure of ISO 11855-2:2015 and 11855-3:2015 [39][40]. The value was determined based on the 
specific heat capacity during the phase change, 242 Wh/m2. The minimum and maximum water mass 
flow rates were 91 and 220 kg/h, respectively, to ensure a turbulent flow while avoiding noise [40]. 
The nominal upper temperature (Tup) of the water was selected according to the freezing temperature 
of the PCM, 21 °C. The nominal lower temperature (Tlow) should be selected to avoid any risk of 
condensation [39][40]. 
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Step 2: Specification of the thermal demand 

The total specific heat capacity of the panel was approximately 242 Wh/m2 within the melting range 
[39]. The heat capacity of a single panel was ~87 Wh [39], with a total of 4144 Wh for the 48 panels 
included in the climatic chamber (Figure 5.6). This was because of the maximum usable ceiling 
coverage in the climatic chamber, which was ~70% of the total floor area. Additionally, the volume of 
PCM per panel was limited by the load bearing capacity of the suspended ceiling and in order to avoid 
leakage [39]. The charging time represented the total occupancy time, 10 h (from 08:00 to 18:00), 
since the cooling load was almost equal to the total heat capacity of the PCM ceiling. The discharge 
time could take place over the entire un-occupied period, which was 14 h during the experiments (from 
18:00 to 08:00) [39]. For a supply water temperature of 20 °C, the discharge time was 11 h with the 
design water flow rate of 140 kg/h and approximately 7 hours with the maximum water flow rate of 
220 kg/h. For a supply temperature of 18 °C and a design water flow rate of 128 kg/h the discharge 
time was reduced to 6 hours [40]. Thus, the time required for storing and releasing heat can be defined 
as a function of the operating parameters and design characteristics, namely cooling load, mass flow 
rate, and supply/return temperatures. 

Step 3: Specification of storage technology 

The MEP represents an indirect-contact thermal energy storage (TES) prototype. The latent heat 
storage material was a solid-liquid phase change material (PCM), paraffin, with a peak melting 
temperature of 24 °C and a phase change range between 21 °C and 25 °C. The PCM was chosen based 
on the defined comfort limits, 20 and 26 °C [39][40].  

Step 4: Specification of integration parameters 

The MEP was designed as a ceiling panel with 0.6x0.6x0.03 m3 (W×L×H) dimensions, being easily 
integrated in regular suspended ceiling openings in Europe. Due to its design, radiant ceiling panels 
with PCM, the thermal storage is located next to the demand, i.e. in the occupied space. With a PCM 
thickness of 0.01, the volume of material per panel was 3.6 dm3 (~3 kg per panel). Therefore, the 
maximum number of panels can be selected as a function of the cooling demand and the available 
ceiling area e.g., total minus the area required for lighting fixture, fire safety, and ventilation diffusers. 
In the climatic chamber, the panels were connected to a heat exchanger (HEX) through a closed loop. 
At the other end, the HEX was connected to a chiller (cooling source). 

Step 5: Specification of key performance indicators (KPIs) 

The MEP was assessed in terms of energy efficiency, thermal comfort, cost, and flexibility. In terms of 
energy, the KPIs used were the specific cooling power during passive charging and active discharging 
and the primary energy use. Thermal comfort was assessed based on the indoor temperature range 
(e.g., operative temperature) and temperature stratification (vertical temperature difference). For 
flexibility, the MEP’s cooling load shifting ability but also supply water temperature range were 
investigated. Both global cost and payback period were used as KPIs for the economic analysis. 

Step 6: Specification of optimization method 

Both water circulation and ventilation were investigated as discharge methods. The parameters 
investigated were the thermal conductivity of the PCM, air flow rate (night ventilation), water flow 
rate, water circulation schedule, and water supply temperature [41]. The supply water temperature 
and flow rate were further analysed in the climatic chamber [39][40]. Results showed that water 
circulation was a better discharging method than night ventilation since it increased the solidification 



 

 

 

ES TCP Final Report Task 37 118 

 

 

percentage of the PCM. The indoor thermal environment was improved for an increase in heat 
conductivity, a longer water circulation operation time, and a lower supply water temperature [40]. 
The increase in flow rate also benefitted the thermal environment as long as the water flow regime 
was turbulent, however having a smaller effect than the other parameters analysed [40]. When 
investigating the control strategy, it was determined that a control dependent on the operative 
temperature to reduce overcooling would benefit the thermal environment [40][41]. 

Step 7: Specification of optimization tools 

An optimization of different operating conditions and panel properties on the discharge of PCM ceiling 
panels was made [40][41]. The MEP was investigated in climatic chamber experiments [39] and 
building performance simulations in TRNSYS [41][42]. 

Results and discussion on case study 5.4.3 

The panel registered during the experiments a specific cooling power between 5 and 28 W/m2, with 
11 W/m2 on average during passive charging, i.e. during occupancy. The thermal environment was 
maintained for 83% of the occupied time in Category II of EN 16798-1:2019 [43]. The temperature 
stratification was within the Category A of ISO 7730 limits, with a temperature difference between 
head and ankles (1.1 and 0.1 m, respectively) of a seated occupant lower than 2 K [39].  

The tests confirmed the MEP’s load shifting ability, being able to shift the cooling load from occupied 
to off-peak (un-occupied) hours [39]. Moreover, the panel presented high flexibility during discharge 
due to the wide range of water supply temperatures, 15 to 21 °C, making it compatible with an 
extensive range of renewable energy sources [39][41]. 

A building simulation analysis of a recently renovated room at DTU compared the PCM ceiling panel 
to a TABS and all-air system in terms of energy, thermal comfort, and cost. The thermal environment 
and primary energy use were similar to TABS. The thermal environment was slightly worse than in the 
experiments, however with operative temperatures within 22 and 27 °C for more than 90% of the 
occupied time. The PCM ceiling panel registered a primary energy use similar to TABS, 16 kWh/m2, 
18% lower than the all-air system for the cooling season of Copenhagen, Denmark [42]. Additionally, 
both PCM and TABS registered a 30% reduction in the peak cooling power compared to the all-air 
system [42]. From a cost perspective, the global cost and payback period were calculated and 
compared to the results obtained from a TABS and an all-air system. In its current state it was 
determined that the MEPs were only marginally more expensive than the all-air system under high 
cooling loads with a 20 year payback period, while TABS had the lowest cost [44]. 

5.4.4 Sizing-Designing Approach for Adiabatic-Compressed Air Energy 
Storage System Towards Self-Sufficient Building 

In a conventional compressed air energy storage (CAES) system, known as diabatic-CAES (D-CAES), the 
thermal energy is lost during the compression process while the heat required for the expansion 
process is supplied by burning fossil fuel, particularly natural gas [45]. 

Adopting TES is a successful way to improve the D-CAES system efficiency while mitigating carbon 
emissions. Consequently, the second generation of CAES technology called adiabatic-CAES (A-CAES) 
emerged. In the A-CAES system, the heat generated during the compression process is stored in a 
thermal energy storage (TES) system and reused to heat the high-pressure air prior to the expansion 
phase. Hence, the A-CAES system can obtain up to 70% system efficiency while achieving a zero-
emission system (no need to burn fossil fuels) [46]. Figure 5.7 illustrates an A-CAES in an integrated 
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energy system. As shown, the A-CAES system can contribute to the electricity, heating, and cooling 
network. 

 

Figure 5.7: A-CAES with TES in the integrated energy system. 

Recently, Bazdar et al. [47] investigated the effect of a low-temperature double hot/cold tank TES 
system capacity on the performance of a grid-connected with a PV/ A-CAES system designed to meet 
the demand of an educational building located in Montreal-Canada. They proposed a sizing-designing 
methodology based on the long-term transient operation of an A-CAES system in an integrated energy 
system to meet the application-specific requirements considering techno-economic and 
environmental aspects [48]. 

Step 1: Specification of the thermal process 

The hot and cold tank temperatures (Tup and Tlow) are set at 120 °C and 25 °C, respectively. During the 
charging process, the heat generated in the compression stage is removed from high-temperature 
compressed air by HTF (e.g., water) from the cold tank while passing through the cooling heat 
exchangers with an effectiveness of 95%. Then, thermal energy in the form of high-temperature heat 
transfer fluid (HTF) is stored in the hot tank and reused for heating the high-pressure air released from 
the air storage tank (at 25 °C) before the expansion process (with an inlet temperature of 100 °C) 
during the discharging phase. 

Figure 5.8 presents flowcharts of the proposed optimal design approach for an A-CAES integrated with 
TES and renewable energy systems. This strategy can be applied to different renewable energy 
resources, hybrid energy systems in different modes (e.g., grid-connected, off-grid, stand-alone) and 
for various applications (e.g., building, district, rural area, urban area, etc.). The TES-related outcomes 
is expected to be an optimum capacity and charging/ discharging time for the TES corresponding to 
the size of solar power generation, CAES components (e.g., compressor/turbine train, air storage tank), 
and building load demand. 



 

 

 

ES TCP Final Report Task 37 120 

 

 

 

Figure 5.8: The designing flowchart for integrated energy systems, including renewables and A-CAES 
with TES. 

Steps 2, 3 and 4: Specification of the thermal demand, storage technology and integration 

parameters 

In the methodology, the regenerative heat system includes two groups of cooling/heating counter-
current heat exchangers and a direct-contact sensible TES with double hot and cold-water tanks.  

It should be noted that a maximum of 12961 PV panels (300 W each) can be installed based on the 
available rooftop area of the case study. For the studied building to achieve a maximum 50% self-
sufficiency, a 570 kW A-CAES system, including TES with a capacity of 3000 kWh (27 m3) and charging 
(tc) /discharging (td) time of 5.12 / 3.78 hr, is needed. 

Step 5: Specification of key performance indicators (KPIs) 

Depending on the user requirement and the system mode, various KPIs could be defined concerning 
the technical (e.g., reliability, self-sufficiency, self-consumption, etc.), economical (e.g., net present 
cost, cost of energy, profit, etc.), and environmental factors (e.g., carbon emission).  

To investigate the effect of the presence of the TES system in CAES on optimal configuration, and the 
KPIs, two scenarios corresponding to the different CAES configurations, such as D-CAES (with 
combustion chamber) and A-CAES (with TES), were investigated. Table 5.8 shows the optimal 
configurations and KPIs of proposed systems designed for electrification of one of the high-energy 
intensive buildings of Concordia university located in downtown of Montreal-Canada with an average 
hourly electricity demand of 645 kWh. 

Steps 6 and 7: Specification of optimization method and optimization tools 

Given the economic model of each component in the integrated energy system along with the system’s 
analytical model as a function of decision variables (components’ design parameters), an MINLP 
optimization problem can be formulated. 

The optimization problem aims to minimize the levelized cost of energy (LCOE) while achieving 
maximum building self-sufficiency (SSR). The PSO method (with #20 particles and #100 iterations) was 
applied to solve the optimization problem for annual system operation with a one-hour resolution. 
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The simulation-optimization model was implemented in MATLAB software (version R2022a) running 
on an Intel Core i7-7500U CPU @ 2.7 GHz. 

Results and discussion on case study 5.4.4 

As shown in Table 5.8, although PV/D-CAES has less LCOE of 0.076 $/kWh compared to 0.084 $/kWh 
for the PV/A-CAES system, thermal energy generated during the compression process recovered by 
around 94% in A-CAES leading to a zero-emission hybrid system compared to the PV/D-CAES with 161 
tonne/year carbon emission (CE). Figure 5.9 shows the one-year operation of TES in the studied hybrid 
PV/A-CAES system. 

 

Figure 5.9: TES system dynamic behavior in the hybrid PV/A-CAES system over a year. 

Table 5.8: Optimal results of sizing D-CAEA and A-CAES with TES system to meet the electric demand 
of an educational building in Montreal-Canada 

Scenario 

Optimal Configuration   KPIs’ Value 

Compressor 

(kW) 

Turbine 

(kW) 

AST 

(m3) 

TES 

(kWh) 

𝑃𝐴𝑆𝑇
𝑀𝑎𝑥  

(MPa) 

LCOE 

($/kWh) 

SSR 

(%) 

HRR 

(%) 

RTE 

(%) 

CE 

(tonne/yr.) 

A-CAES 585 526 300 3000 10.6  0.084 50 94 51.0 0 

D-CAES 286 587 300 0 6.35  0.076 50 0 40.8 161 

 

5.4.5 Utilization of LHTES integrated with geothermal energy system in 
underground engineering 

Thermal energy storage systems based on phase change materials (PCM) are used to shift the peak 
load in buildings. An effective method to improve the performance of such system is to bury it in the 
soil to take advantage of soil’s high thermal inertia. In this case, Zeng et al. [49] firstly proposed the 
model of underground buried water tank integrated with PCM panels as thermal accumulators for a 
heat pump system. The thermal inertia of the geothermal energy is used to remain the PCM at solid 
state at first and to naturally cool the tank once they are melted. The fluid is heat exchanged with the 
soil and the phase change plates through the phase change water tank, as shown in Figure 5.10. 

Steps 1, 2 and 3: Specification of the thermal process, thermal demand and storage technology 
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A 2-D mathematical model was created to replicate the mechanics of phase change and heat transport 
in the HTF and the soil medium surrounding the tank. A symmetrical border at the middle of the fourth 
panel is taken to streamline the calculating process. The mathematical model is developed in MATLAB 
and experimentally validated with an NMBE and RMSE of less than 10% and 30%, respectively. 

Prior research has focused on achieving a specified engineering load shifting using a single water-phase 
change material (PCM) tank, whose volume is adjusted to the required cooling or heating load. Zeng 
et al. [50]'s proposal for thermal storage in an underground shelter's emergency mode also includes 
multi-modular water-PCM tanks (MMWPT), which offer flexibility and are simple to mass-produce. The 
PCM are first kept in a solid form by geothermal energy, and the tank is naturally cooled after the PCM 
have melted. 

 

Figure 5.10: Schematic of buried water-PCM tank: (a) top view, (b) front-left view [49] 

As shown in Figure 5.11 (a), water tanks are intended to be connected in an N×M matrix shape where 
M is the number of tanks in parallel and N is the number of tanks connected in series. A specific 
arrangement of PCM panels in the MMWPT was shown in Figure 5.11 (b). The water-PCM tank 
measures 2000 mm in length, 600 mm in width, and 2000 mm in height (height). The PCM panels inside 
the tank are 1800 mm in length, 60 mm in width, and 2000 mm in height (height). There is 20 mm 
space between the vertical PCM panels. 

Step 4: Specification of integration parameters 

The geothermal heat pump system (GHPS) is cascaded with multi-modular water-phase change 
material (PCM) tanks to cool the underground shelter in the ordinary mode and emergency mode, 
respectively. The hybrid system designed for the underground shelter is displayed in Figure 5.12 as a 
schematic diagram. MMWPT, GHEs, WLHPs, water collectors, water separators, and pumps are the 
key components of the proposed system. The following two operating strategies are given based on 
the conditions of the underground shelter in peacetime (Model.1) and emergency time (Model.2). 
Finally, the model was developed in TRNSYS [51]: 

Model.1: The GHE offers heating and cooling to the underground shelters in ordinary mode. Based on 
the peak load, the maximum length of the GHE is determined. 

Model.2: When compared to Model 1, the cooling load in the emergency mode exhibits a considerable 
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rise. Parallel cooling is provided by the two halves, GHE and MMWPT. By adding to and scaling MMWPT, 
the peak load difference between Models 1 and 2 is eliminated. 

Step 5: Specification of key performance indicators (KPIs) 

The system's key performance indicators included the outlet temperature, effective discharge 
duration (EDD), and total heat emitted. Due to its effect on the energy efficiency of HP systems, the 
temperature drop (ΔTwater) during the effective discharging duration (EDD) is a critical evaluation 
indicator. The outcome shows that the ΔTwater in the scenario with N (number of series tanks) ×5 
(number of parallel tanks) is about four times as that with N×1. The related effective discharge duration 
(EDD), which is increased by dividing the water into five parallel water tanks, is 1.27–1.28 times longer. 

 

Figure 5.11: Schematic diagram of the multi-modular water-PCM tanks [50] 

According to the parametric analysis, the PCM's thermal conductivity, the size and shape of the PCM 
panels, and the fluid's velocity of heat transfer in the spaces between the panels are the factors 
affecting tank performance. The primary factors affecting performance in the emergency mode for the 
integrated system are the ground heat exchanger length, multi-modular water-PCM tank matrix 
(MMWPM), and cooling water flow ratio. Table 5.9 is a list of the specific comparison criteria used in 
the study [51]. 
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Table 5.9: Values of variables used in the parametric study in the emergency mode [52] 

Variables Base scenario Values 

GHE length (m) 2500 1800, 1900, 2000, 2100, 2200, 2300, 2400, 
2500 

MMWPM 3×5 3×5, 3×4, 2×5 

Cooling water flow 

ratio 

2:8 0:10, 1:9, 2:8, 3:7, 4:6, 5:5 

Steps 6 and 7: Specification of optimization method and optimization tools 

A Taguchi design, also known as an orthogonal array, was designed for simulations after listing the 
parameters and their levels. After that, TRNSYS 18 was used to interact with the data for simulation, 
and all the parameter and level combinations were set as inputs in the MATLAB code. ANOVA was also 
used to assess the data and find out how each influential element varied and what influence it had. 
The identification of factor ranking and their primary factors was reported as a result. The proper 
parameter combination is then displayed [52]. 

 

Figure 5.12: Schematic diagram of the hybrid system [51] 

 

Results and discussion on case study 5.4.5 



 

 

 

ES TCP Final Report Task 37 125 

 

 

The implementation of the recently planned buried water-PCM tank in the underground engineering 
for load shifting is expected to use the system as a reference. The PCM in the tank can be kept in a 
solid form by burying the water-PCM tank in the ground. The tank can offer latent thermal storage 
capacity in times of need. According to the findings, the underground water-PCM tank's cooling 
capacity is 24.96% greater than that of an insulated tank. 

Zeng et al. [51] additionally investigate the effect of MMWPT configuration on the HP system's cooling 
performance. The ideal MMWPM for the underground shelter would be 3x5. In an emergency, 
MMWPT is expanded and scaled to serve as the GSHP's thermal storage system in an underground 
shelter. The hybrid system's thermos-economic performance in both regular mode and emergency 
mode are carried out. The average initial cost per unit EDD in emergency mode was found to be the 
most pertinent evaluation metric. Flowing ratio comes before GHE length and MWT matrix in the list 
of factors. The initial cost per unit EDD Was dropped by 24.37% with the hybrid system's ideal design. 

5.4.6 Utilization of LHTES integrated with Ground source heat pump

（GSHP）in office building 

An effective and environmentally friendly method of heating and cooling buildings is the ground source 
heat pump (GSHP). Summertime cooling storage is provided by PCM tanks, which are charged with 
cold by GSHP units at night. Cooling towers dissipate heat while releasing cold during the day. Cold is 
supplied by PCM tanks first, followed by GSHP units when PCM tanks have finished discharging, and 
then by GSHP units after that. The leftover heat is dispersed by a cooling tower if the building cooling 
load exceeds the combined capacity of the PCM tank and heat pump equipment. 

Step 1: Specification of the thermal process 

The exchanger provides Water and PCM with the fundamentals of heat exchange in a water tank [53]. 
Warm fluid from the collector transfers heat to water through a heat exchanger when the tank is in a 
state of heat storage. Thus, the water's temperature needs to be raised. Due to the temperature 
difference between water and the phase change material, some heat will be transferred from the 
water to the latent heat storage capsules. Similar to this, when the tank is in the heat-extracting 
condition, a heat exchanger uses cool fluid to remove heat from water, lowering the temperature of 
the water. Water will receive a portion of the heat stored in latent heat storage capsules. In this case, 
the water serves as a heat-transfer medium between the exchanger and PCM as well as a heat storage 
medium for perceptible heat. 

Step 2: Specification of the thermal demand 

In an office building in Wuhan, China (30.52 N, 114.32 E), a numerical study on a GSHP system 
combined with PCM cooling storage tank was conducted. This office building had a 5175 m2 total area. 
In the summer, the cooling season was from June 1 to September 30 while in the winter, it was from 
December 1 to February 28. In Table 5.10, the annual dynamic building load was displayed. 
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Table 5.10: Annual dynamic building load [4]. 

Load type Value Ratio of cooling load to heating load 

Design cooling load (kW) 1045.46 2.42 

Design heating load (kW) 432  

Cumulative cooling load (kWh) 682695 3.6 

Cumulative heating load (kWh) 189132  

Step 3: Specification of the storage technology 

Both in the summer and the winter, ground heat exchangers (GHE) are employed for heat exchange. 
The overall length of GHE is determined by the office building's winter heating load. The GHE are single-
U-shaped PE tubes. The borehole is 0.2 m in diameter, 100 m deep, and spaced 5 m apart. The tube 
has an internal diameter of 25 mm and an exterior diameter of 32 mm. Table 5.11 includes a list of the 
specific details of the Latent Heat Storage Tank. 

Table 5.11: Latent heat storage tank design parameters 

The size of tank 1.0. × 1.2 × 1.0 m 

Heat loss coefficient Ut 0.3 W/(m2 K) 

Total area of exchanger Ahe 6 m2 

Coefficient of heat-transfer Uhe 150 W/(m2 K) 

Water volume in tank Vw 0.45 m3 

PCM type CaCl2 · 6H2O 

PCM enclosed size 140 × 120 × 70 mm 
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PCM total volume Vpm 0.5 m3 

PCM melting point Tm 29.9 

PCM melting latent heat L 187.49 kJ/kg 

PCM density ρpm 1710 kg/m3 

PCM specific heat CPpm 1460 J/(kg K) (s) 2130 J/(kg K) (l) 

PCM thermal conductivity λpm 1.09 W/(m K) (s) 0.54 W/(m K) (l) 

Step 4: Specification of integration parameters 

The GSHP systems must be connected with additional supplemental cooling/heating systems due to 
the year-round imbalance of cooling and heating demands in cooling- or heating-dominated locations. 
An efficient way to deal with issues brought on by cooling and heating imbalance in various locations 
is to combine a GSHP with a thermal energy storage (TES) system. The implementation of GSHP 
integrated with PCM cooling storage system still faces a number of difficulties. The best way to operate 
this combination system for various buildings in various climates is challenging. Yet, there is currently 
insufficient study being done on integrated system optimization. As a result, the combined system is 
created in TRNSYS to perform system optimization. Figure 5.13 displayed the integrated system's 
schematic [54]. 

 

Figure 5.13: Schematic of combined system [54]. 
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Step 5: Specification of key performance indicators (KPIs) 

Under various cooling storage ratios (the ratio of PCM cooling storage tank capacity to total system 
cooling capacity), the energy performance and economic analyses of this combined system were 
examined. For this integrated system, the ideal operation mode and cooling storage ratio were found. 

Steps 6 and 7: Specification of optimization method and optimization tools 

Based on TRNSYS, a numerical model of the GSHP coupled with PCM cooling storage system was 
developed. The cooling tower's temperature difference control method is then used to simulate the 
system's operation under year-round continuous and intermittent (with three designs) situations for 
a period of 20 years [55]. 

Results and discussion on case study 5.4.6 

The issue of soil heat accumulation can be efficiently solved by using GSHP in conjunction with a PCM 
cooling storage system, which also increases the heat pump unit's operational efficiency. A consistent 
operating performance and good energy efficiency were achieved by the GSHP with PCM cooling 
storage compared to that without. For this integrated system, the ideal mode of operation and cooling 
storage ratio were discovered. The best cooling storage ratio, according to numerical research, was 
40%, considering the initial investment and operating costs. Comparing the GSHP combined PCM 
cooling storage system to the standard GSHP hybrid cooling tower (CT) system, the annual cost of the 
system under a cooling storage ratio of 40% was decreased by 34.2%. 

The PCM cooling storage system employed the partial cooling storage and cooling storage before 
modes. In comparison to a typical GSHP hybrid cooling tower system without cooling storage, the 
operating mode could fully release the store cooling energy and increase the utilization efficiency of 
cooling storage consumption and operation cost. A key element in the combined system's ideal design 
and functioning is the cooling storage ratio. Varying cooling storage ratios have an impact on the 
combined system's operation energy performance and economy. However, factors such as building 
type, location, and system utilization mode affect the ideal cooling storage ratio. 

This case just presents an example of the optimal usage of the combined system. The optimal design 
could be helpful to strengthen the theoretical and practical understandings on the combined systems 
and facilitate more extensive applications of the systems. 

5.4.7 Utilization of LHTES integrated with solar energy system in Tibet  

A well-known engineering technique for bridging the gap between the heat demand of the served 
building and the heat supply from the solar heating system is the integration of a latent heat energy 
storage. 

Step 1: Specification of the thermal process 

Zhao et al. [56] explored a Tibet-specific PCM-integrated solar heating system that is exceptional in 
terms of altitude, solar radiation, air pressure, and water boiling temperature, among other factors. 
The entire process entails: (1) identifying the distinct characteristics of Tibet's climate and altitude and 
relevant requirements for the solar system; (2) designing a PCM-integrated solar heating system based 
on a chosen building in Lhasa and planning the potential control strategies appropriate to such a 
system; (3) analyzing the system's energy performance under different operational schemes; and (4) 
recommending the most suitable system operational scheme and design strategy. 
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Step 2: Specification of the thermal demand 

At a specific building in Lhasa, the phase change material (PCM) storage tank is intended to support 
the solar heating system [53]. The five stories of this building, each have a heating area of 3778.87 m2 
and a height of 3.9 m. The building's hourly heating load (from 4 November to 19 March the following 
year) is computed using DEST software. The supply water temperature and return water temperature 
of the heating system are then calculated using the load value. Based on numerical models of the SHS-
PCM, the entire heating season (November to March) is chosen as the research timeframe. 

Step 3: Specification of the storage technology 

The minimum solar portion for building heating should be 60%, according to the Technical Code for 
Solar Heating Systems (GB 50495-2009) [57]. The roof space of a building, however, limits the overall 
area of solar heat collectors. Two rows with 44 collector panels each are finally chosen, taking into 
account the need for the edge wall shelter and maintenance area. The PCM storage tank is only 
regarded as latent heat storage, with the same heat storage capacity, in accordance with code [57]. 
Table 5.12 displays the selected parameters for both tanks [58]. 

Table 5.12: Selection parameters for ordinary water tank and PCM storage tank [58] 

 Nomenclature Units 
Ordinary Water 

Tank 

PCM Storage 

Tank 

Heat storage capacity mQ
 GJ  0.63 0.63 

Volume of tank hpV
 

3m  3×2.5×4 3×2.5×0.8 

Volume PCM plate ppV
 

3m  - 3×2.5×0.08 

Number of PCM plates ppN
 

 - 6 

PCM materials    Paraffin 

Phase-transition temperature mT
 ℃ - 47 

Terminal form   fan coil Fan coil 
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Supply and return heating 

temperature 
oeine TT ,, /

 
℃ 45/40 45/40 

Step 4: Specification of integration parameters 

The authors have put up a conceptual design for the PCM-integrated solar heating system (SHS-PCM) 
to match the heat load and demand of the intended building. A solar collecting system (SCS), a phase 
change thermal storage system (PCTSS), and an indoor heating system make up the system in Figure 
5.14. The SCS includes flat plate solar thermal collectors (FSTCs), a plate heat exchanger, pump 1, 
valves, pipelines, etc. as the primary source of heat. As an additional heat source, the PCTSS consists 
of a PCM storage tank, an assistance heat source (AHS), a plate heat exchanger, pump 2, valves, and 
pipelines, among other components [59]. 

 

Figure 5.14: Schematic diagram of the SHS-PCM [56] 

Step 5: Specification of key performance indicators (KPIs) 

The heating conditions, solar energy contribution rate, and overall heating system energy-saving 
capabilities are examined using a public building in Lhasa as the research object. This analysis is done 
using various PCM storage tanks and various terminal shapes. 

A control strategy and numerical models were created for the first time for each of the seven distinct 
operation modes that cover the whole heating season of the system, as shown in Table 5.13. The seven 
proposed operation modes are as follows: 

• Mode 1: free cooling 

• Mode 2:reservation of heat absorbed by the solar collector in the PCM storage tank when there is 

no heating demand  

• Mode 3: direct supply of the heating demand by the solar collector 

• Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the 

excess heat stored in the PCM storage tank 

• Mode 5: use of heat stored in the PCM storage tank to meet the heating demands 

• Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources 

to meet the heating demands 

• Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. 

Mathematical models were established for each of the above seven operation modes, taking into 
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consideration the effects of the outdoor meteorological parameters and terminal load on the 

heating system. 

With reference to the valve and temperature numbering in Figure 5.14, the system operating modes 
and control parameters are listed in Table 5.13. 

Table 5.13: Operating modes and control parameters of the SHS-PCM [58]. 

Mode Detail 

Flat-

Plate 

Solar 

Collecto

r 

PCM 

Storag

e Tank 

Auxiliary 
Heat 
Source 
(AHS) 

Operation 

Mode 

1 
Natural cooling Off Off Off All valves closed 

Mode 

2 

FSC for PCM storage 

tank 
On On Off 

Valves V7 and V1 

opened; Pumps 1 and 2 

on 

Mode 

3 
FSC for indoor heating On Off Off 

Valves V7, V2, V6, and V5 

opened; Pumps 1 and 2 

on 

Mode 

4 

FSC for PCM storage 

tank and indoor 

heating 

On On Off 

Valves V7, V1, V2, V6, 

and V5 opened; Pumps 1 

and 2 on 

Mode 

5 

PCM storage tank for 

indoor heating 
Off On Off 

Valves V3, V6, V5, and V4 

opened; Pumps 2 on 

Mode 

6 

PCM storage tank and 

AHS for indoor 

heating 

Off On On 

Valves V3, V6, V5, V4 

opened; Pumps 2 on; 

AHS on 
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Mode 

7 

AHS for indoor 

heating 
Off Off On 

Valves V6, V5, V4, and V2 

opened; Pumps 2 on; 

AHS on 

Steps 6 and 7: Specification of optimization method and optimization tools 

Meteorological data, hourly heating load, and design parameters were entered into MATLAB as the 
known conditions and the time step was adjusted to 20 minutes based on the numerical models of a 
SHS coupled with PCM thermal storage established in MATLAB. Calculated dynamic properties of the 
performance indices of the AHS, PCM storage tank, and FSTCs during the heating process (such as 
operation time of each mode, inlet and outlet temperature of fluids, heating quantity of assistant heat 
sources, phase change ratio, thermal efficiency of solar collectors, etc.). 

A novel energy performance dynamic simulation model, namely, department of Housing and Urban-
Rural in Tibet, was then applied to analyze the energy performance of the building and associated solar 
heating system at three operational schemes and two different heating selections. On these bases, 
optimal models and operation pattern are selected. 

Results and discussion on case study 5.4.7 

According to the findings, a SHS with a PCM tank offers a 34% greater capacity for energy savings than 
a conventional water tank heating system. In terms of the system's energy efficiency, daytime heating 
is superior to full-day heating. It is recommended that the PCM storage tank's design selection 
parameters provide a daily heat storage capacity that covers 70–80% of the heating season. The most 
energy can be saved by a floor radiant system with supply and return water temperatures of 40 and 
35 ℃. 

The real-time parameters for the entire heating season of the system with respect to the different 
operation modes can be obtained by solving the simulation models, and used as reference for the 
optimal design and operation of the actual system. 

5.5 Discussion and Conclusions 

Thermal energy storage is a proven technology to increase the energy efficiency of buildings in several 
ways, e.g., by increasing the share of renewable energy use or by increasing the efficiency of heating 
and cooling systems in buildings. A proper design of TES can be a challenging and sophisticated task, 
considering the wide range of existing and emerging technologies for TES as well as the variety of 
building applications requiring the integration of TES. Hence, an optimal design of TES system has 
increasingly attracted the attention of researchers and is a subject of many recent studies. In this 
context, a systematic design methodology for TES that can be adapted to a range of applications is 
beneficial, easing the design procedure, thus removing the barrier for deployment of TES systems in 
practice. However, few studies have been yet devoted to this topic. To support the establishment of a 
systematic design methodology, the current subtask has introduced the essential steps should be 
taken for optimal design of TES systems as follows. 

Characterization of the thermal process is the first step should be taken in designing TES systems. Often, 
three parameters related to the heat transfer fluid can be used for this purpose, namely the upper 
temperature, the lower temperature, and the flow rate. In the next step, a detailed information on the 
thermal resources and thermal demands should be available. This information can identify the main 
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system design parameters which are the charging time, discharging time and the storage capacity. 
Considering the process and system boundaries, at this stage it is possible to specify the storage 
technology that can best suit to the application. Afterwards, in addition to the parameters related to 
the TES system itself, the parameters related to the integration of the system to building should also 
be specified in the next design step. Finally, in a smart design scheme, the aim is to optimize the system 
operational performance, either considering merely the TES system or the storage system in 
conjunction with the rest of the plant, i.e., where it is integrated. Hence, relevant application specific 
KPIs will be defined for performance evaluation following by defining the optimization methodology 
and tools employed for this purpose in the next design steps.  

The introduced design steps have been applied to seven different case studies, namely design of: 

• Earthbag-PCM integrated walls to maximize thermal comfort in temporary housings 

• Geothermal borehole and Water tank storage systems to maximize seasonal performance factor 

and minimize the global lifecycle cost of solar-assisted geothermal heat pump system in a 

restaurant 

• Thermally activated building systems (TABS) including ceiling panel with PCM material embedded 

with water pipe to optimize energy efficiency, thermal comfort, cost, and flexibility in a test room 

at a university campus 

• A water tank storage in conjunction with a conventional air energy storage to minimize the 

levelized cost of energy while achieving maximum building self-sufficiency in integrated energy 

systems  

• An underground water-PCM tank to optimize a heat pump cooling performance in an underground 

shelter 

• A PCM cooling storage tank to optimize the energy performance and cost of a ground source heat 

pump system in an office building 

• A PCM storage tank integrated with a solar heating system to optimize solar energy contribution 

rate, and overall heating system energy-saving in a public building 

Despite the diversity among above cases studies, which include both sensible and latent TES employing 
in different types of buildings, it can be concluded that the design procedure in all of them can be 
broken down into the introduced design steps. There is discrepancy between the design cases in terms 
of input parameters to the proposed design methodology though. For instance, in case study 5.4.2, 
the upper and lower working temperatures were not considered as inputs but outputs of the design 
optimization. This discrepancy is due to the limitations of the existing plant before the installation of 
the storage system. In this regard, an important factor which plays a role is the type of the application, 
whether it is a retrofit application or a greenfield application. Following this work, it is recommended 
to include the type of the application (retrofit or greenfield) as a decisive factor in the design 
methodology. Moreover, thermo-chemical storage system is not among the case studies and the 
design process of such storage needs further investigation. While the proposed design steps can be 
modified according to chosen storage technology, they can be considered as a general base to develop 
a systematic methodology for the design of TES systems. In this study, the design process and the 
effectiveness of 7 steps have been clarified. By utilizing these steps, smart design becomes possible. 

  



 

 

 

ES TCP Final Report Task 37 134 

 

 

5.6 References 

[1] Environment, U.N., 2022. 2022 Global Status Report for Buildings and Construction [WWW 
Document]. UNEP - UN Environment Programme. URL 
http://www.unep.org/resources/publication/2022-global-status-report-buildings-and-
construction (accessed 8.22.23). 

[2] González-Torres, M., Pérez-Lombard, L., Coronel, J.F., Maestre, I.R. and Yan, D., 2022. A review 
on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, pp.626-
637. 

[3] Sharma, A., Tyagi, V.V., Chen, C.R. and Buddhi, D., 2009. Review on thermal energy storage with 
phase change materials and applications. Renewable and Sustainable energy reviews, 13(2), 
pp.318-345. 

[4] Violidakis, I., Atsonios, K., Iliadis, P. and Nikolopoulos, N., 2020. Dynamic modeling and energy 
analysis of renewable heating and electricity systems at residential buildings using phase change 
material based heat storage technologies. Journal of Energy Storage, 32, p.101942. 

[5] Dincer, I. and Rosen, M.A., 2021. Thermal energy storage: systems and applications. John Wiley 
& Sons. 

[6] Dheep, G.R. and Sreekumar, A., 2014. Influence of nanomaterials on properties of latent heat 
solar thermal energy storage materials–A review. Energy Conversion and Management, 83, 
pp.133-148. 

[7] Alva, G., Lin, Y. and Fang, G., 2018. An overview of thermal energy storage systems. Energy, 144, 
pp.341-378. 

[8] Navarro, L., De Gracia, A., Colclough, S., Browne, M., McCormack, S.J., Griffiths, P. and Cabeza, 
L.F., 2016. Thermal energy storage in building integrated thermal systems: A review. Part 1. 
active storage systems. Renewable Energy, 88, pp.526-547. 

[9] Navarro, L., De Gracia, A., Niall, D., Castell, A., Browne, M., McCormack, S.J., Griffiths, P. and 
Cabeza, L.F., 2016. Thermal energy storage in building integrated thermal systems: A review. 
Part 2. Integration as passive system. Renewable Energy, 85, pp.1334-1356. 

[10] Heier, J., Bales, C. and Martin, V., 2015. Combining thermal energy storage with buildings–a 
review. Renewable and Sustainable Energy Reviews, 42, pp.1305-1325. 

[11] Kuravi, S., Trahan, J., Goswami, D.Y., Rahman, M.M. and Stefanakos, E.K., 2013. Thermal energy 
storage technologies and systems for concentrating solar power plants. Progress in Energy and 
Combustion Science, 39(4), pp.285-319. 

[12] Gibb, D., Johnson, M., Romaní, J., Gasia, J., Cabeza, L.F. and Seitz, A., 2018. Process integration 
of thermal energy storage systems–Evaluation methodology and case studies. Applied energy, 
230, pp.750-760. 

[13] Zheng, N. and Wirtz, R.A., 2004. A hybrid thermal energy storage device, part 1: design 
methodology. J. Electron. Packag., 126(1), pp.1-7. 

[14] Li, Y., Ding, Z., Shakerin, M. and Zhang, N., 2020. A multi-objective optimal design method for 
thermal energy storage systems with PCM: A case study for outdoor swimming pool heating 
application. Journal of Energy Storage, 29, p.101371. 



 

 

 

ES TCP Final Report Task 37 135 

 

 

[15] Alam, M., Devapriya, S. and Sanjayan, J., 2022. Experimental investigation of the impact of 
design and control parameters of water-based active Phase Change Materials system on thermal 
energy storage. Energy and Buildings, p.112226. 

[16] Ručevskis, S., Akishin, P. and Korjakins, A., 2020. Parametric analysis and design optimisation of 
PCM thermal energy storage system for space cooling of buildings. Energy and Buildings, 224, 
p.110288. 

[17] Cui, B., Gao, D.C., Xiao, F. and Wang, S., 2017. Model-based optimal design of active cool thermal 
energy storage for maximal life-cycle cost saving from demand management in commercial 
buildings. Applied Energy, 201, pp.382-396. 

[18] Maleki, H., Ashrafi, M., Ilghani, N.Z., Goodarzi, M. and Muhammad, T., 2021. Pareto optimal 
design of a finned latent heat thermal energy storage unit using a novel hybrid technique. 
Journal of Energy Storage, 44, p.103310. 

[19] Bastien, D. and Athienitis, A.K., 2018. Passive thermal energy storage, part 1: Design concepts 
and metrics. Renewable Energy, 115, pp.1319-1327. 

[20] Bastien, D. and Athienitis, A.K., 2017. Passive thermal energy storage, part 2: Design 
methodology for solaria and greenhouses. Renewable Energy, 103, pp.537-560. 

[21] Chen, Y., Galal, K.E. and Athienitis, A.K., 2014. Design and operation methodology for active 
building-integrated thermal energy storage systems. Energy and buildings, 84, pp.575-585. 

[22] Pirasaci, T., Wickramaratne, C., Moloney, F., Goswami, D.Y. and Stefanakos, E., 2018. Influence 
of design on performance of a latent heat storage system at high temperatures. Applied Energy, 
224, pp.220-229. 

[23] Deng, S., Nie, C., Jiang, H. and Ye, W.B., 2019. Evaluation and optimization of thermal 
performance for a finned double tube latent heat thermal energy storage. International Journal 
of Heat and Mass Transfer, 130, pp.532-544. 

[24] Raul, A., Jain, M., Gaikwad, S. and Saha, S.K., 2018. Modelling and experimental study of latent 
heat thermal energy storage with encapsulated PCMs for solar thermal applications. Applied 
Thermal Engineering, 143, pp.415-428. 

[25] Metin, C., Hacipasaoglu, S.G., Alptekin, E. and Ezan, M.A., 2019. Implementation of enhanced 
thermal conductivity approach to an LHTES system with in‐line spherical capsules. Energy 
Storage, 1(1), p.e39. 

[26] Hübner, S., Eck, M., Stiller, C. and Seitz, M., 2016. Techno-economic heat transfer optimization 
of large scale latent heat energy storage systems in solar thermal power plants. Applied Thermal 
Engineering, 98, pp.483-491. 

[27] Lin, W., Ma, Z., Ren, H., Gschwander, S. and Wang, S., 2019. Multi-objective optimisation of 
thermal energy storage using phase change materials for solar air systems. Renewable energy, 
130, pp.1116-1129. 

[28] Yuksel, Y.E., Ozturk, M. and Dincer, I., 2019. Performance assessment of a solar tower‐based 
multigeneration system with thermal energy storage. Energy Storage, 1(4), p.e71. 

[29] Campos‐Celador, Á., Diarce, G., Larrinaga, P. and García‐Romero, A.M., 2020. A simple method 
for the design of thermal energy storage systems. Energy Storage, 2(6), p.e140. 

[30] IRENA (2020), Innovation Outlook: Thermal Energy Storage, International Renewable Energy 



 

 

 

ES TCP Final Report Task 37 136 

 

 

Agency, Abu Dhabi, ISBN 978-92-9260-279-6. 

[31] Giacone, E. and Mancò, S., 2012. Energy efficiency measurement in industrial processes. Energy, 
38(1), pp.331-345. 

[32] D. M. dos Santos and J. N. D. C. Beirão, “Generative tool to support architectural design decision 
of earthbag building domes,” 2017, no. November, pp. 538–543. doi: 10.5151/sigradi2017-083. 

[33] GEG, “How to Build an Earthquake-Resistant Home: An Earthbag Construction Manual,” Good 
Earth Global, 2018. 

[34] Batagarawa, “Assessing the thermal performance of phase change materials in composite hot 
humid / hot dry climates: An examination of office buildings in Abuja- Nigeria,” 2013. 

[35] S. Ali, B. Martinson, and S. Al-Maiyah, “Evaluating neutral , preferred , and comfort range 
temperatures and computing adaptive equation for Kano region computing adaptive equation 
for Kano region,” 2020. 

[36] Maria Ferrara, Enrico Fabrizio. Optimized design and integration of energy storage in Solar-
Assisted Ground-Source Heat Pump systems. Building Simulation, 2023, under publication. 

[37] Biglia, A., Ferrara, M. and Fabrizio, E., 2021. On the real performance of groundwater heat 
pumps: Experimental evidence from a residential district. Applied thermal engineering, 192, 
p.116887. 

[38] Ferrara, M., Dabbene, F. and Fabrizio, E., 2017, August. Optimization algorithms supporting the 
cost-optimal analysis: the behavior of PSO. In Building Simulation 2017 (Vol. 15, pp. 1418-1427). 
IBPSA. 

[39] D. I. Bogatu, O. B. Kazanci, and B. W. Olesen, “An experimental study of the active cooling 
performance of a novel radiant ceiling panel containing phase change material (PCM),” Energy 
Build., vol. 243, p. 110981, 2021, doi: 10.1016/j.enbuild.2021.110981. 

[40] D.-I. Bogatu, J. Q. Allerhand, O. B. Kazanci, and B. W. . Olesen, “D6.3 Report on the usability of 
TABS panels (radiant ceiling panels with PCM),” HybridGEOTABS. 2019. 

[41] J. Q. Allerhand, O. B. Kazanci, and B. W. Olesen, “Investigation of the influence of operation 
conditions on the discharge of PCM ceiling panels,” E3S Web Conf., vol. 111, no. 201 9, pp. 3–9, 
2019, doi: 10.1051/e3sconf/201911103021. 

[42] J. Q. Allerhand, O. B. Kazanci, and B. W. Olesen, “Energy and thermal comfort performance 
evaluation of PCM ceiling panels for cooling a renovated office room,” E3S Web Conf., vol. 111, 
2019, doi: 10.1051/e3sconf/201911103020. 

[43] Zhang et al., “Resilient cooling strategies – A critical review and qualitative assessment,” Energy 
Build., vol. 251, p. 111312, 2021, doi: 10.1016/j.enbuild.2021.111312. 

[44] L. Bergia Boccardo, O. B. Kazanci, J. Quesada Allerhand, and B. W. Olesen, “Economic 
comparison of TABS, PCM ceiling panels and all-air systems for cooling offices,” Energy Build., 
vol. 205, p. 109527, 2019, doi: 10.1016/j.enbuild.2019.109527. 

[45] E. Bazdar, M. Sameti, F. Nasiri, F. Haghighat, Compressed air energy storage in integrated energy 
systems : A review, Renew. Sustain. Energy Rev. 167 (2022) 112701. 
https://doi.org/10.1016/j.rser.2022.112701. 

[46] Ortega-Fernández, S.A. Zavattoni, J. Rodríguez-Aseguinolaza, B. D’Aguanno, M.C. Barbato, 



 

 

 

ES TCP Final Report Task 37 137 

 

 

Analysis of an integrated packed bed thermal energy storage system for heat recovery in 
compressed air energy storage technology, Appl. Energy. 205 (2017) 280–293. 
https://doi.org/10.1016/j.apenergy.2017.07.039. 

[47] E. Bazdar, N. Fuzhan, H. Fariborz, Effect of Low-Temperature Thermal Energy Storage on the 
Hybrid PV-compressed Air Energy Storage Operation, in: 2022: pp. 1609–1616. 
https://doi.org/10.4229/WCPEC-82022-5DV.2.19. 

[48] Bazdar, E., Nasiri, F. and Haghighat, F., 2023. An improved energy management operation 
strategy for integrating adiabatic compressed air energy storage with renewables in 
decentralized applications. Energy Conversion and Management, 286, p.117027. 

[49] Zeng, C., Cao, X., Haghighat, F., Yuan, Y., Klimes, L., Mankibi, M.E. and Dardir, M., 2020. Buried 
water-phase change material storage for load shifting: A parametric study. Energy and Buildings, 
227, p.110428. 

[50] Zeng, C., Yuan, Y., Cao, X., Dardir, M., Panchabikesan, K., Ji, W. and Leng, Z., 2022. Operating 
performance of multi‐modular water‐phase change material tanks for emergency cooling in an 
underground shelter. International Journal of Energy Research, 46(4), pp.4609-4629. 

[51] Zeng, C., Yuan, Y., Haghighat, F., Panchabikesan, K., Cao, X., Yang, L. and Leng, Z., 2022. Thermo-
economic analysis of geothermal heat pump system integrated with multi-modular water-phase 
change material tanks for underground space cooling applications. Journal of Energy Storage, 
45, p.103726. 

[52] Gao, X., Zhang, Z., Yuan, Y., Cao, X., Zeng, C. and Yan, D., 2018. Coupled cooling method for 
multiple latent heat thermal storage devices combined with pre-cooling of envelope: Model 
development and operation optimization. Energy, 159, pp.508-524. 

[53] Han, Z., Zheng, M., Kong, F., Wang, F., Li, Z. and Bai, T., 2008. Numerical simulation of solar 
assisted ground-source heat pump heating system with latent heat energy storage in severely 
cold area. Applied Thermal Engineering, 28(11-12), pp.1427-1436. 

[54] Zhu, N., Hu, P., Lei, Y., Jiang, Z. and Lei, F., 2015. Numerical study on ground source heat pump 
integrated with phase change material cooling storage system in office building. Applied 
Thermal Engineering, 87, pp.615-623. 

[55] Yang, J., Xu, L., Hu, P., Zhu, N. and Chen, X., 2014. Study on intermittent operation strategies of 
a hybrid ground-source heat pump system with double-cooling towers for hotel buildings. 
Energy and Buildings, 76, pp.506-512. 

[56] Zhao, J., Yuan, Y., Haghighat, F., Lu, J. and Feng, G., 2019. Investigation of energy performance 
and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a 
dynamic energy simulation model. Energy, 172, pp.141-154. 

[57] Ministry of housing and urban-rural development of the People’s Republic of China, technical 
Code for solar heating system. Beijing, China: China Architecture & Building Press; 2009., n.d. 

[58] Zhao, J., Ji, Y., Yuan, Y., Zhang, Z. and Lu, J., 2018. Energy-saving analysis of solar heating system 
with PCM storage tank. Energies, 11(1), p.237. 

[59] Zhao, J., Ji, Y., Yuan, Y., Zhang, Z. and Lu, J., 2017. Seven operation modes and simulation models 
of solar heating system with PCM storage tank. Energies, 10(12), p.2128. 

 

https://doi.org/10.4229/WCPEC-82022-5DV.2.19


 

 

 

ES TCP Final Report Task 37 138 

 

 

6 Subtask D - Advanced storage control applied to optimize 
operation of energy storage systems for building and 
district 

Contributors: Maria Ferrara, Dragos-Ioan Bogatu, Lee Doyun, Mahmood Khatibi, Samira Rahnama, 
Jun Shinoda, Ying Sun, Alireza Afshari, Fariborz Haghighat, Ongun B. Kazanci, Ryozo Ooka, Enrico 
Fabrizio 

6.1 Introduction 

In the context of the ongoing accelerating energy transition toward the massive use of multiple 
renewable energy sources, energy storages are crucial to deal with the variable dynamics of renewable 
energy supply that should be matched with the dynamic profiles of energy demand. Moreover, within 
the complex multi-source multi-energy systems that are exploited to ensure a full decarbonization of 
the building sector, the strategies used to control such storages may not be straightforward, as they 
should be set considering a large number of variables and uncertain inputs so that a multiple number 
of interrelated outputs are optimized.  

This has been at the center of a great amount research activities in the last few years, as demonstrated 
by the increasing number of papers focused on energy storage and their optimal integration in the 
design and operation of energy systems for buildings and districts published by the most prestigious 
journals in the area.  

One of the most comprehensive reviews on the topic of energy storage for buildings is focused on 
control strategies for Buildings Integrated with Thermal Energy Storage (BITES) [1]. Strengths and 
weaknesses of the different control techniques are discussed according to the categorization of control 
techniques derived from [2], shown in Figure 6.1. 

 

Figure 6.1: Classification and typical applications of control techniques utilized in BITES [1] 
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This review anticipated in 2015 the developments of the advanced control techniques that has 
occurred in the last few years. In particular, MPC (model predictive control) and AI-based methods are 
depicted as promising, but their applications were still rare and incomplete at that time.  

In the following  years, as a consequence of the fast development of research on the topic, several 
review studies dedicated to advanced control strategies based on prediction models were published. 
In their review published in 2017, Thiebelmont et al. [3] focus on studies related to the improvement 
of the storage performance due to predictive control strategies based on the weather forecast, and 
Tarragona et al. [4] in 2021 provide a review on studies that apply model predictive control techniques 
to thermal energy storages, with no reference to electrical energy storages. 

In the same period, other reviews were dedicated to model predictive control applied to a specific 
technology for energy storage, such as PCM [5], or without a specific focus on energy storage, such as 
the review by Gholamzadehmir in 2021 about MPC used for HVAC system control of smart buildings 
[6], after the topic of integration of storages in smart building were addressed in 2018 in the review 
by Sanchez Ramon et al. [7]. A review dedicated to storage control in microgrids was published in 2021 
[8], filling the previous gap about the control of electrical storages and enlarging the perspective from 
the building to the district scale.  

The analysis of latest review related to the topic reveals that the current decade has been crucial for 
development of innovative methods for energy storage control based on advanced computational 
techniques, mainly based on artificial intelligence. 

An updated classification of storage control techniques based on latest development is required 
including, but not limited to, the support of different declination of artificial intelligence to all the 
available control strategies, regardless of their relying on predictive models or not. In this report, the 
identification and review of recent studies concerning the control of energy storage integrated in 
systems for buildings, or group of buildings is performed. In particular, the report concentrates on 
papers that are not only purely theoretical or numerical studies, but where some experimental 
activities were carried out or where analysis are conducted based on real case-studies. This is 
particularly important in order to evaluate the effectiveness of the control strategies against real 
measurements. Thus, a systematic review process was implemented aimed at identifying the latest 
advancements in energy storage control, the emerging trends and the role of AI in shaping such trends, 
and future perspectives. 

6.2 Methodology 

6.2.1 The process for paper selection and inclusion in the review  

Following a systematic review process based on the previously identified research question, an 
extensive literature research was performed through Scopus® database in June 2022. The research 
was carried out by considering titles, abstracts, and keywords. Thus, the TITLE-ABS-KEY (building 
energy storage control) AND TITLE-ABS-KEY(experimental OR real OR experiment OR case-study)) AND 
PUBYEAR > 2014 AND (LIMIT-TO ( LANGUAGE,"English" ) query was introduced in the database.  

This extensive literature search yielded 396 papers that were systematically selected through the 
process schematized in Figure 6.2, with a methodology similar to the one of Song et al. (2022) [3]. After 
the identification of the first set of papers (n=396), the subsequent abstract screening activities led to 
select 118 papers that appear to be within the scope of the paper according to the abstract and are 
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worth to be included in the dataset for statistical analysis in the present review (sections 2.2 and 3.2). 
Then, a further screening based on the whole text has led to identify a subset of 46 papers that are 
fully within the review scope and were analyzed more in details in sections 3.3 and 3.4, paving the way 
for the discussion and future perspective sections.    

 

 

Figure 6.2: The process of creation of the dataset 

 

6.2.2 Description of the dataset 

A preliminary analysis of the literature that was analyzed is reported in Figure 6.3 where the number 
of papers over time and some other features are reported. It can be seen that most of the papers deal 
with the building scale (more than 60%) and that the remaining part are devoted to study the storage 
effects on districts and systems. As regards the type of the storage, active-thermal is the most common, 
followed by the active-electrical. As regards the type of the study, even though the initial research was 
done considering the “experimental” keyword, just 17% of the references are purely experimental, 
while 23% are based on an hardware-in-the loop approach (e.g. real storage, emulated energy use) 
and the vast majority concerns works that perform simulations of storages calibrated against results 
from experimental testbeds. 
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Figure 6.3. Overview of the 118 papers analysed. Year of publication, scale and nature of study, type 
of storage included in the study 

6.3 Classification and taxonomy of control for energy 
storage in buildings 

There are many types and categories of controls. First of all, it is necessary to divide it into two stages: 
the control method and the control system. Control methods are individual methods. Specifically, 
there are on-off control, P-control, PID control, and so on. Control systems become a more meta 
methodology. Control systems are classically classified into open-loop control (sequence control) and 
closed-loop control (feedback control). Many advanced control techniques are closed-loop controls.  

This section presents an updated classification of control systems for energy storage systems based on 
latest literature advancement in the field. The main purpose of using the energy storage system is 
energy saving effect and cost saving effect by time shift of demand. That is, the control system for 
energy storage cannot be separated from the temporal operation of each component. In other words, 
the control system for energy storage is not immediate, but determines the operation from the present 
to the future.  

The future operation can be roughly classified into non-predictive control and predictive control. For 
example, a thermal energy storage system that produces thermal energy at night when electricity 
prices are low and discharges heat during the daytime when electricity prices are high is sequential 
control that does not require prediction. On the other hand, predicting the next day's heat demand 
and determining the amount of heat production is control accompanied by prediction. Control systems 
for energy storage are usually either or a combination of these.  

Predictive control is a type of feedback (closed-loop) control system, but not all feedback control 
accompanies prediction. Therefore, control systems for energy storage systems are now classified into 
non-predictive control and predictive control instead of the conventional open-loop control and 
closed-loop control classification.  

Furthermore, as sub-methods of these classifications, we can classify using classical methods and 
Artificial Intelligence (AI). Rule-based methods that employ conditional decision branching are 
sometimes classified as a type of AI, but here they are classified as classical methods. These are 
illustrated in Figure 6.4. 
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Figure 6.4: Control systems and methods for energy storage: the proposed updated classification 

 

6.3.1 Relationships between controls and applications 

It is interesting to apply the previous classification to the literature study that were considered to be 
analysed. As shown in Figure 6.5, regarding control without prediction, 85% of studies refer to classic 
control strategies. Of the 60% of papers using control with prediction, classic strategies are used in 
35% of studies, while 60% refer to AI-based control strategies and the remaining 4% use hybrid 
methodologies. 

In order to know if a rationale behind the type of control and the application appears from the studies 
that were analyzed, the relation between the type of storage (passive, active-thermal, active-electrical 
and both thermal and electrical) and the type of control (split into the two levels of analysis) was 
analyzed and reported in Figure 6.6: Relationship between the different levels for energy storage 
control. It appears that control methods based on prediction are more used for active thermal and 
electrical storages. Similarly, when we go from passive to active storages the use of classic control is 
reduced and AI or hybrid control types are preferred.  

In order to study how the type of application determines the choice of control method a third 
representation was done matching the scale of the storage and the type of control in Figure 6.7. It can 
be seen that the largest the scale, the more it is necessary to use control methods with prediction and 
based on AI algorithms. 
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Figure 6.5: Repartition of papers according to the two levels of control types 

 

 

Figure 6.6: Relationship between the different levels for energy storage control  

 

 

Figure 6.7: Relationship between the scale of the study and the storage control  

 

6.3.2 Non-predictive control strategies for energy storages 

6.3.2.1 Applications without the support of AI 

Among the papers that were analysed, 16 papers used classic control techniques without prediction. 
Figure 6.8 shows the types of classic control used in the papers. Most of the studies implemented an 
on/off control, and two studies implemented P, PI, or PID controls (controllers using error dynamics). 
Some studies with on/off control adjusted their control setpoint based on criteria such as schedules 
[4], predefined curves [5], or energy price [6]. 
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Figure 6.8: Classic control types in the selected studies 

The selected studies report on the benefit of energy storage through the more efficient operation of 
the coupled system components, such as the reduced operating hours of the heat pump. In order to 
report some of the features of such applications, here are summarized some relevant studies of this 
approach. Meng et al. [7] conducted an experimental study of a variable air volume (VAV) air 
conditioning system with an air source heat pump and thermal storage tank. The heat pump was 
operated with an on/off control based on the return chilled water temperature. The charge/discharge 
of the thermal storage tank was done at fixed times. The use of heat storage reduced the on/off times 
of the heat pump from 43 to 7 times in a day with summer settings, and from 36 to 7 times in a day 
with winter settings, compared to scenarios without any storage. Zhang et al. [8] conducted an 
experimental study accompanied by a simulation on a hybrid solar/biomass heating system with a 
water storage tank. Water temperatures from the solar panels and storage tank were monitored to 
control the on/off behavior of the biomass boiler and the switching of the heat source (solar panels, 
storage tank, or boiler). The heat pump was operated with a step control of 0, 60, 80, and 100%, 
depending on the outdoor temperature. A simulation study of a residential building in Lvling, China 
showed that among the 1975 h of heating hours, 749 h was operated with just the supply water from 
the storage tank. 

Qiang and Zhao [9] investigated the addition of a cold water storage tank to improve the operation of 
a gas engine heat pump (GEHP) system. The GEHP was connected to an office building for cooling 
purposes and domestic hot water supply. Three operation modes were assumed according to the 
cooling load: i) low load - energy is supplied from the energy storage when building load decreases, ii) 
medium load - heat pump supplies energy to the building and to the energy storage, iii) high load - 
heat pump and energy storage supplies energy to the building simultaneously. Adding the cold water 
storage tank with the current control strategy allowed the engine to run within economic mode all day, 
leading to a stable and efficient GEHP. The primary energy ratio improved by 68%, 9.5%, and 33%, in 
the low, medium, and high loads after adding the cold water storage, respectively. 

Among the selected articles, energy storage in the context of demand response (DR) was commonly 
studied. Some studied the DR potential of the storage by its load shifting capability, while others 
studied price-based demand response. Chen et al. [10] conducted an experimental study to evaluate 
the DR potential of the building thermal mass and a thermal storage tank. The DR potential was 
evaluated by the cooling load reduction when pre-cooling or a setpoint offset was adopted in the 
system control. Within the conditions of the experimental setup, the pre-cooling (and hence the 
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charging of the building thermal mass) maintained comfort conditions for over 90 min without the use 
of active cooling. The use of a 200 L water storage tank with 9 °C chilled water was able to meet the 
cooling demand for over two hours for the 32 m2 test facility. Romaní et al. [11] conducted a simulation 
study with an experimentally validated numerical model of a room with a radiant wall acting as a 
thermal energy storage, which was coupled with a photovoltaic (PV) panel. Different control setpoint 
of the room for the on/off behavior of the heat pump was tested, with different priorities such as 
maintaining room temperature, maximizing PV energy production, and minimizing energy imported 
from the grid. By charging the radiant wall during off-peak hours, a maximum of 84% cost reduction 
compared to the baseline (on/off based on room temperature control) was achieved in the studied 
case. The authors identified parameters that could be further investigated, such as indoor temperature 
setpoint, threshold of the PV output for activating the heat pump, and the prediction of PV production, 
cooling load, and charging time. Cichy et al. [6] conducted a simulation case study of a large residential 
building with heat pumps, solar thermal collectors, hybrid collectors, PV panels, thermal storage tanks, 
and lithium-ion battery storages. Price-depending control was adopted to adjust the setpoint 
temperature of the storage tank and indoors. The most efficient heat source at the time was selected 
to operate the heat pump. Compared to a fixed setpoint control, the price-depending control led to 
an overall cost reduction of 14%. Guo et al. [12] conducted a simulation study on the demand response 
potential of a ventilated electric heating floor system, where the thermal mass of the floor was used 
as storage and the ventilation was used for discharging. Heating from the floor system was controlled 
by a PID controller. A fixed indoor temperature setpoint control and a control that varied the indoor 
temperature setpoint based on the DR status were simulated. The active discharge of the floor with 
ventilation reduced energy use by up to 37% with a constant setpoint control, and by 62% with a DR-
based control. Chapaloglou et al. [13] used a model of a microgrid consisting of a sports center with 
heat pump, PV modules, and a battery to study the influence of two rule-based controls, peak shaving 
and price arbitrage, on the electricity cost. The peak shaving strategy made use of the stored electricity 
in the battery during periods with high load. In the price arbitrage, electricity could be stored in the 
battery during periods with electricity prices lower than the daily mean. The stored electricity could 
then be used in periods when the electricity prices exceeded the daily mean value. Cost reduction was 
obtained under both strategies, but with up to 23 percent points higher with the price arbitrage control. 
These values are though dependent on the on-site energy production from the PV modules. Coccia et 
al. [14] carried out a demand side management analysis for a water loop heat pump (WLHP) system 
integrated with a refrigeration system for building climate control and food preservation in a 
supermarket. A model was developed in TRNSYS where the role of the water loop and its thermal 
inertia for energy flexibility was investigated. The demand side management analysis based on the 
real-time electricity price showed that the setpoints that regulate the WLHP operation, namely heat 
recovery set point temperature, auxiliary heater set-point temperature, and dry cooler set-point 
temperature could be updated to reduce yearly electrical energy cost. By also optimizing the storage 
tank volume, a similar overall energy use was obtained but with a reduction in the yearly electricity 
cost of 2000 EUR. 

There has also been an increasing number of studies investigating the use of phase change materials 
(PCM) for thermal storage. Most studies are still at the phase of developing and testing components 
containing PCM, and complex controls are yet to be tested. Hu et al. [15] conducted experimental and 
simulation studies on a newly developed, PCM enhanced ventilated window. The charging and 
discharging of the PCM was managed by changing the openings for ventilation, and the change in mode 
was determined by the time, season, and indoor temperature. Compared to the primitive control with 
no mode changes, the control proposed by the authors resulted in energy savings up to 62% in summer 
and 9.4% in winter. Stathopoulos et al. [16] investigated the load shifting potential of an air to PCM 
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heat exchanger. For the analysis both experimental and simulation data were used where the heat 
exchanger was integrated in the mechanical ventilation system which supplied air to a room. The 
implemented control stopped active heating from 18:00 to 20:00, when the peak winter daily 
electricity demand was found to occur in France. During off-peak hours, the PCM was charged by the 
incoming air, which was actively heated using electrical resistances. The stored heat was then released 
to the air being supplied to the room. The study showed that by integrating the PCM, 9 to 10% of the 
energy could be shifted to the off-peak period while managing to maintain a constant room 
temperature. Li et al. [17] investigated the development of a novel solar heat pump heating system, 
which used PCM as the heat storage. An air type solar collector with encased PCM was used to store 
thermal energy. During periods with insufficient solar radiation the energy stored in the PCM could be 
utilized as a heat source to the evaporator of the heat pump providing indoor heating. The control 
system switched operation between i) solar heating mode ii) solar-assisted heat pump heating mode 
iii) heat pump heating mode depending on the indoor temperature, the solar radiation intensity, and 
solar collector internal temperature. Experimental results showed that the solar collector could 
continuously supply heat for 9.5 h with an average thermal efficiency of 45%. The energy stored in the 
PCM could power the heat pump efficiently for 3 h. A case study over a period of 30 days during the 
heating period in Tongliao, China showed that the system managed to maintain the indoor 
temperature between 21 and 24 °C. An economic analysis showed an annual heating cost reduction of 
73% when compared to an electric boiler heating system. Several studies have reported on the 
development of radiant ceiling panels with PCM, such as Bogatu et al. [18] and Gallardo and Berardi 
[19]. An early study by Bourdakis et al. [20] showed that the PCM panels could passively absorb the 
internal heat during the daytime, and be discharged in the night time (either by ventilation or by water 
cooled by night sky radiative cooling). Hence, it was shown that PCM ceiling panels have a peak shifting 
effect similar to that of a thermally active building system. A recent study by Gallardo and Berardi [21] 
conducted a simulation study to evaluate the energy flexibility potential of their PCM panels. The 
results showed that the panels (with a ceiling coverage of 66%) yielded an average heat storage 
capacity of about 430 Wh/(m2⋅day) and an average annual storage efficiency of 86%. Compared to the 
baseline all-air system, the PCM panel system was also able to shift the electric power demand by 8h. 

Despite the numerous studies supporting the benefit of energy storage, there were certain limitations 
reported related to its design and control. One of the precautions that must be taken is reducing the 
parasitic loss of the storage, by means such as insulation. Le et al. [4] conducted a simulation case 
study of a cascade air-to-water heat pump system to be used in a retrofit of a residential building. 
Three heating strategies were compared: i) direct mode – the heat pump provided heat directly to the 
house, ii) indirect mode – the heat was first provided to the water storage tank and then to the house, 
and iii) combined mode – the tank was charged during the night and the heat pump provided heat 
directly to the house when the tank was discharged. The on/off behavior of the heating system was 
controlled by a room thermostat. In the studied scenario, the average room temperature of all three 
heating strategies were 19.6 – 19.8 °C. However, the annual electricity use was highest with the 
indirect mode (17,304 kWh) and lowest with the direct mode (11,777 kWh). The operating cost was 
highest with the indirect mode (3,028 £) and lowest with the combined mode (1,976 £). The annual 
system coefficient of performance (COP) of the indirect mode was 33% lower than the direct mode 
due to parasitic losses of the storage tank. Bengoetxea et al. [22] conducted an experimentally 
validated simulation study of a hybrid system for heating and domestic hot water production, 
comprising a micro-CHP (combined heating and power), a condensing boiler, and a thermal storage 
tank. The on/off and charge/discharge behavior of the components were controlled based on the 
setpoint of the micro-CHP return water temperature, tank temperature, and return water temperature 
from the consumptions (demand-side). The corresponding setpoint temperatures were determined by 
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an optimization function to minimize cost and to maximize exergy performance. The optimized control 
yielded a 7% cost reduction and 4% higher exergy efficiency compared to the baseline control from 
the experiments. However, the authors also pointed out that in order to benefit from the optimized 
control, proper insulation is necessary, keeping the transmission loss below 5% of the energy 
consumed. 

In contrary to the studies summarized above, classic control without any prediction did not provide 
adequate performance in some cases. Belmonte et al. [23] conducted a simulation study of a building 
equipped with a water-to-water, solar-assisted heat pump system, which was coupled with a water 
and phase change material (PCM) tank. The charge/discharge of the heat storage components were 
thermostatically controlled with a dead band. The simulation results showed that the use of the PCM 
tank led to worse results, i.e., 30% less useful solar energy collected, 30% less solar energy transferred 
to the heat pump, 6% lower collector efficiency, and the reduction of heating availability from 99% to 
73%. The reduced performance was associated with the longer charging/ discharging behavior of the 
PCM. Authors pointed out the importance of a more optimized control strategy to take full advantage 
of the storage capacity of the PCM tank. One method for improving a system with energy storage from 
a control perspective would be to refine controls of multiple components, as suggested by Borreli et 
al. [5]. The authors conducted a simulation study testing different control strategies for a heating 
system in an existing nearly zero energy building (nZEB). In the baseline control, the boiler operation 
was controlled to maintain a fixed setpoint inside the water storage tank. The baseline control was 
compared with other strategies such as a scheduled setback of the tank temperature, or a variable 
temperature setpoint of the tank depending on the outdoor temperature. With the combination of a 
variable tank temperature setpoint and early air handling unit (AHU) operation time, primary energy 
use was reduced by 32 – 46% and hours within comfort range (20 – 24 °C) increased by 0.6 – 3.4% 
compared to baseline. The study concluded that in order to achieve energy savings and comfort, it 
would be necessary to optimize the control of each component within the system (i.e., AHU and boiler). 
Other studies also mention the necessity for more advanced control methods, such as model 
predictive control (MPC) and energy and demand forecast [24].   

6.3.2.2 Applications supported by AI  

Modern nature-inspired optimization algorithms such as Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) are used mostly to optimize the schedule of combined cooling, heating, and power 
(CCHP) systems with TES in district or building level. 
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Figure 6.9: Control types in the selected studies 

 

Li et al. [25] combine GA and dynamic programming (DP) and propose an effective hybrid optimization 
framework to find the optimal day-ahead scheduling as well as real-time dispatching of a CCHP system 
with TES. They try to minimize a multi-objective cost function including energy consumption, operation 
cost and environmental impacts. Their results show that the proposed scheme increases the overall 
performance by 1.92% in summer and by 1.91% in winter in comparison with conventional GA method. 

Zhang et al. [26] in a similar work combine GA and stochastic dynamic programming (SDP) to propose 
a two-stage optimization scheme for an integrated energy system (IES) with demand response (DR) 
and TES. (IES is just another term for referring to CCHP systems). They try to minimize a multi-objective 
cost function including operation cost and thermal comfort. The optimization problem is divided into 
two sub-problems, namely demand-side and supply-side, which are solved iteratively. GA is applied in 
the first stage to determine the optimal electricity, cooling, and heating demand curves considering 
the comfort requirements of consumers. SDP then is exploited in the second stage to find the optimal 
schedule for storage and energy production subject to the demand curves resulted from GA. The 
results of the second stage are then given back to the first stage to reoptimize the demand curves. The 
process loops until the optimal operation schedule and demand curves are obtained. Their results 
show that the proposed method reduces operation cost by 3.6% in comparison with conventional GA 
method.  

Wang et al. [27] apply a decentralized optimal control method based on multi-agent system (MAS) to 
minimize the operation cost of CCHP systems with TES by exploiting GA. Their results reveal that the 
operation cost is reduced by 10.0% on a typical summer day and by 7.7% on a typical spring day 
compared with a rule-based control method. 

Li et al. [28] use a multi-objective seagull optimization algorithm (MOSOA) to optimize the energy 
consumption, operation cost and environmental impacts of CCHP systems. They propose an operation 
strategy called “following the state of thermal storage tank” (FST) and compare its performance with 
the two common strategies named “following the electric load” (FEL) and “following the thermal load” 
(FTL). Their results indicate that the novel proposed strategy is more economical and reduces fuel 
consumption effectively. It increases primary energy saving ratio by 2.53% and 2.43% in comparison 
with FEL and FTL strategies. 
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Apart from the mentioned studies regarding district level, Barthwal et al. [29] exploit multi-objective 
GA to optimize phase change material (PCM) and ice-based TES systems for air conditioning 
applications in building level. The objectives include exergy efficiency and total annual cost. Inlet and 
outlet temperatures of air handling unit (AHU) for discharging cycle, storage temperature, evaporator 
temperature and condenser temperature are five decision variables for the optimization program. 
They optimize the performance of the system in partial and full operating modes for two refrigerants. 
Their results reveal that the exergy efficiency of ice-based TES systems in full mode operation is about 
33% higher than partial mode operation. However, it is achieved by compromising the total annual 
cost. In addition, PCM-based TES systems demonstrate higher exergy efficiency and higher total annual 
cost in comparison with ice-based TES systems. 

Beside the metaheuristic optimization algorithms, fuzzy logic methods are also applied to improve the 
performance of TES systems in residential and district levels. For example, Tascioni et al. [30] suggest 
a smart control strategy based on a fuzzy logic approach for a latent heat TES system in a micro-scale 
concentrated solar power (CSP) plant linked with a combined heat and power (CHP) unit. Their results 
show that the proposed strategy increases electricity produced by the CHP unit by about 5% and 
simultaneously reduces thermal losses in the CSP plant by 30%. 

Gao et al. [31] utilize a fuzzy controller to dispatch and control a TES system within an IES. They propose 
an optimal scheduling approach consist of two layers, one layer for day-ahead scheduling and the 
other one for real-time dispatching. The fuzzy logic controller is implemented in the second layer for 
managing the electrical and thermal storage subsystems. Their results show that the proposed method 
reduces the operation cost between 1%-2% in comparison with two conventional scheduling methods. 

6.3.3 Predictive control techniques  

6.3.3.1 Applications without the support of AI  

The classic controller with prediction means that the controller schedules the control variables based 
on prediction from white-box models or grey-box models. It could be further classified as classic model 
predictive controller (MPC) or rule-based controller (RBC) based on whether or not an optimization 
procedure is involved to solve the optimal control signals. This review procedure found 19 existing 
studies on the application of such classic predictive-based controller to buildings/systems equipped 
with energy storage system. Among them, 18 papers focused on developing classic MPC, while 3 
studies developed RBC based on the predictive result. Besides, 6 studies predicted the building/system 
status or performance based on grey-box models, while 14 papers developed white-box models. 
Moreover, most of studies evaluated the applicability of proposed controllers based on numerical 
study, while only 2 papers applied the classic controller in a field experiment. 
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(a)                                                (b)                                              (c) 

Figure 6.10: Paper distribution on (a) MPC or RBC; (b) white-box model or grey-box model; (c) 
numerical study or experimental study 

Existing studies on the classic MPCs usually developed a white-box/black-box model for the studied 
systems/buildings/district to predict their status/performance, such as energy demand and indoor air 
temperature. Then, the predicted values would be used to form the objective function or constraints 
of an optimization problem to minimize the operation cost, energy cost, or peak loads, while ensuring 
a comfortable indoor environment and/or making sure the devices working within their rated 
conditions. Detailed review on classic MPC is presented as below: 

Salpakari and Lund [32] developed physical realistic models for a heating system that consists of a 
ground-source heat pump with an electric heater, a thermal energy storage system (i.e., a water tank), 
a battery, and a hydronic heating system. Then, they integrated these models into the electricity cost 
optimization function of a MPC to get the hourly optimal compressor power, electric heater power, 
battery power, mass flowrate of the hydronic heating system, and number of running shiftable 
appliances. Besides, they applied a RBC to maximize PV self-consumption. Through a numerical case 
study on a Finnish low-energy house, the cost-optimal control resulted in 13-25% electricity cost saving 
and 8-88% decrease in the grid feed-in, compared to the inflexible reference case that did not include 
a battery or any shiftable appliance. 

Similarly, Tang and Wang [33] predicted the power demand of chillers based on the cooling supply and 
coefficient of performance (COP). Meanwhile, they developed a building thermal model and simplified 
it as a linear discrete-time state-space model to predict the indoor air temperature. Then, an 
optimization problem was conducted to optimize the set-point of chiller power demand and cooling 
discharge rate of a cooling storage system, with the aim of minimizing the power consumption while 
ensuring an acceptable indoor environment. By adopting this MPC in to a TRNSYS model of a central 
air-conditioning system in a commercial building, the MPC was proofed to be able to achieve expected 
power reduction and improve indoor thermal environment. 

Descamps et al. [34] assumed perfect forecast/prediction (i.e., the predicted values are the same as 
actual ones) for weather, heat load, and electricity cost in the MPC that is aimed at minimizing the 
operational cost of a district heating network, which combines a heat pump, a gas boiler, and a solar 
thermal productor and a thermal storage tank. The MPC reduced the operational cost by up to 5% 
compared to a rule-based controller (RBC). 

Moreover, one type of commonly used classic MPCs is called mixed integer linear programming (MILP). 
For example, Martínez Ceseña and Mancarella [35] proposed an operational optimization framework 
based on MILP to get the optimal half-hourly time-ahead set points for all controllable devices 
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(including electrical energy storage and thermal energy storage systems) in a smart district with the 
aim of minimizing energy cost. Fratean and Dobra [36] applied a MILP controller to control the 
heating/cooling system, energy generation system, and storage system, with the aim of reducing the 
energy consumption and lifecycle cost of two buildings in Bucharest, Romania. Furthermore, Duman 
et al. [37] integrated MILP into a HEMS to optimize the day-ahead operation schedule of battery energy 
storage system and electric vehicle. In this study, the experimental house was simulated by a 1R1C 
model, while other devices (including refrigerator, electric vehicle, PV generation, air conditioner, etc.) 
were modelled by white-box models. They found that the smart HEMS decreased the daily cost by 
53.2% under time-of-use (TOU) tariff of Turkey through taking advantage of self-consumption.  

The classic MPCs have been used when investigating the energy storage capacity and peak shifting 
ability of both passive and active energy storage systems. For instance, the joint electrical-thermal 
model of buildings and low voltage networks (LVNs) in a district were simulated as a white-box model 
by Jazaeri et al. [38] with considering the thermal properties of four types of wall constructions. Their 
study found that high thermal inertia from inside enables the building to shift the entire cooling load 
from peak periods to off-peak periods. Azuatalam et al. [39] investigated the effect of the thickness of 
phase change materials (PCMs) on the heating cost of a building controlled by a RC model-based MPC 
that minimizes the heating cost and the difference between the desired indoor air temperature and 
the measured value.  

To apply the classic MPCs to control devices/buildings in a district, Ouammi [40] proposed a white-box 
model based MPC to comprehensively control a smart network of residential buildings by optimally 
scheduling the power exchanges, charge/discharge rate of energy storage devices, the state of micro-
CHP and the charging state of electric vehicles. Tang et al. [41] used the game theoretic method to 
minimize the electricity bill of a district through optimizing the indoor air set-point temperature and 
the operation of an active thermal storage system. In their study, buildings were simulated by a RC 
model. The result shows that the proposed game theory-based decentralized control strategy 
decreased the peak load by ~10%, which is over two times of the individual-level control strategy.  

Due to the multiple time scale nature of energy storage systems and different dimensions between 
buildings and districts, developing hierarchical controllers based on the structure of MPC would be an 
effective solution when the control target includes several energy storage systems or consumers. For 
instance, Touretzky and Baldea [42] proposed a hierarchical controller for thermal energy storage 
systems. It consists of a fast control layer for passive storage and a slow control layer for active storage. 
The numerical study results show that the hierarchical controller resulted in over 59% cost saving 
compared to the baseline. Furthermore, Ferro et al. [43] proposed a bi-level controller to minimize the 
electricity cost of interconnected buildings in a smart grid. In the controller, the upper decision maker 
provides references for power exchange with the aim of minimizing cost and power losses. Following 
the references, the consumers manage storage systems and devices to achieve cost saving and comfort 
requirements. 

Except of optimizing the operation of devices in buildings/districts with thermal storage systems, 
classic MPCs have also been used in design stage. For instance, Sharifi et al. [44] proposed an optimal 
load splitting algorithm (OLSA) to optimize the hourly load splitting between a thermally activated 
building system (TABS) and a secondary system over a year based on a RC model of the TABS and the 
building. Accordingly, the design parameters (such as supply water temperature and water flow rate) 
of TABS could be defined based on the optimal heat flow rate calculated by OLSA. 

Furthermore, most of existing studies investigated the applicability MPCs based on the numerical study 
instead of the field experiment. Here, studies based on experiments would be summarized. Bürger et 
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al. [45] designed a one-day experiment to successfully implement a mixed-integer nonlinear MPC with 
the aim of economic optimization to control the operation of a solar-driven climate system, which 
consists of two solar thermal collectors, a hot water storage system, a cold-water storage system, and 
an adsorption cooling machine. Kuboth et al. [46] compared a white-box model based MPC with a 
reference PI-based standard controller by using them to control heat pumps in two test rigs, which 
include an air source heat pump and a hot water tank. The experimental result indicates that the 
economic MPC reduced the heat pump operation cost by 34.0%, through averagely increasing the heat 
pump coefficient of performance (COP) by 22.2% and the photovoltaic energy self-consumption by 
234.8%. 

Although the classic MPCs could reduce the peak loads and electricity cost substantially, improving its 
computation speed for solving the optimization problem should be concerned. For instance, 
Meinrenken and Mehmani [47] pointed out that solving the optimal one-day-ahead set-point 
temperature for an official building and battery dispatch took around 1.5h when using a standard 
computer with Intel Core i5 CPU and 8GB memory. To reduce the computation time, several solutions 
could be considered, such as using faster processor, parallel computing for different zones, or 
simplifying the predictive model/objective function. For example, Ostadijafari et al. [48] constructed a 
nonlinear economic model predictive controller (NL-EMPC), in which the predicted energy 
consumption was multiplied by the electricity price to form the objective function and the predicted 
indoor air temperature were used to set the thermal comfort constraints. Note that the indoor air 
temperature prediction was predicted by a bilinear model derived from a RC network model, while the 
energy consumption of the HVAC system and battery storage system was formulated by the state-
space equations. They then mimic the behaviour of NL-EMPC by a linearized economic model 
predictive controller (L-EMPC) that approximate the non-linear equations by feedback linearization, 
constraint mapping, or piecewise linearization. The L-EMPC shows comparable cost saving ability with 
NL-EMPC, but much faster computation speed. 

Another concern for classic MPCs is that they do not always show better control performance than 
traditional control strategies. For example, Oliveira et al. [49] found that a simple control policy for a 
water heater tank could show comparable cost reduction ability than a classic MPCs. Improving the 
accuracy and simplicity of predictive models may improve the applicability of MPCs [50]. 

Except the MPCs, the predictive results from classic models have also been integrated into RBCs to 
schedule preheating/precooling of the HVAC system to take advantages of thermal storage capacity 
of thermal mass [51]. Parejo et al. [52] proposed a homeostatic control strategy to control the PV 
generation, energy storage, and air conditioning of a building in a micro-grid. The proposed controller 
includes two different parts: predictive branch and reactive branch. The former part is aimed at 
maintaining a thermal comfortable indoor environment, while the later part controls the charging 
state of batteries to maintain the microgrid running.  

 

6.3.3.2 Applications  supported by AI  

Combining model predictive control (MPC) and AI to enhance the performance of heating systems with 
TES in building and district levels has absorbed much attention among researchers during recent years. 
Usually, artificial neural networks (ANN) are exploited as the predictive model within MPC approaches 
and/or metaheuristic algorithms are applied to solve the optimization problem. 

Cox et al. [53] exploit ANN for modelling a large district cooling system with ice storage within an MPC 
framework. GA was linked with MPC to solve the optimization problem. Their results show that the 
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proposed method is capable of reducing operation costs between 13% to 16% comparing with a fixed 
schedule case. 

Reynolds et al. [54] exploit ANN to predict several variables including indoor temperature, building 
demand and solar photovoltaic generation and then use them within an MPC framework combined 
with GA to optimize the operation schedules of an IES system with TES. Their results show that the 
suggested method increase the profit by 44.88% in comparison with a to an RBC approach.  

Finck et al. [55] exploit ANN to predict solar radiation, space heating demand and electricity 
consumption of a heat pump for a building heating system including TES and then apply an economic 
MPC framework to minimize the total costs of electricity consumed by the heat pump. Set points for 
the temperature of domestic hot water tank and space heating tank are considered as control variables 
and a direct search method is applied to solve the optimization program. Their results indicate that 
the suggested method reduces operation cost by around 10% in comparison with an RBC method. In 
addition, the proposed method improves demand flexibility significantly. 

Lee et al. [56] examine the optimal control of charging and discharging rates of a chilled water TES tank 
to minimize the operation cost. They use ANN as their prediction models and then apply a 
metaheuristic algorithm called “εDE-RJ” to solve the optimization problem. ANN models predict a few 
system variables including the temperatures of the bottom, middle, and top TES tank layers. Their 
results show that the proposed AI-based MPC strategy reduces the operation cost by 9.1–14.6% in 
comparison with conventional rule-based control (RBC) approaches. 

Apart from the studies which combine MPC with AI, some papers use AI as prediction model in 
combination with conventional control methods to optimize the operation of TES systems. For instance, 
Meng et al. utilize an Elman ANN for load forecasting as well as TES modeling. The ANN is coupled with 
PSO to optimize load prediction. Their results indicate that the proposed method is capable of reducing 
the operation costs effectively while keeping thermal comfort at a desired level.  

6.4 Emerging trends and perspectives 

6.4.1 The role of AI   

Energy storage technology stabilizes the fluctuating energy supply and demand by storing and 
reallocating thermal and electrical energy. Environmental and economic benefits from its application 
are considerable and it can be applied widely at the system, building, and district levels. However, as 
reported in the earlier section, the potentials and advantages of energy storage technologies are very 
dependent on how they are controlled. 

In general, the energy storage system needs to be operated from a comprehensive perspective by 
considering the demand load that is dynamic and easy to be influenced by external disturbances such 
as meteorological or building parameters [57]. Especially, the energy storage system has a strong 
cooperative effect with renewable energy sources, but renewable energy sources have drawbacks in 
that they are unstable with volatility and intermittency  [58].  

When it comes to classic control strategies such as feedback control or rule-based control, they only 
focus on the current status of the external conditions and thus easily fail to lead the energy storage 
system to maximize environmental and/or economic profits. Therefore, to enhance the overall 
efficiency of the energy storage system, an advanced control strategy that considers the thermal 
and/or electrical behaviors of the energy storage system under dynamic operational conditions [59].  

Contrary to the classic control strategies, AI-based control can help to draw up the intelligent 
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management of the energy storage system by solving two main following challenges. 

1. Prediction of key influencing factors of the energy storage system such as energy storage 

performance, meteorological parameters, and demand loads. 

2. Optimization to search for best solutions of control variables for the energy storage systems to 

consider single or multiple objectives to maximize environmental and/or economic benefits with 

upper and lower capacity constraints. 

For instance, Rehman et al. [60] employed an AI-based control method to optimize a photovoltaic-
based energy system integrated with onsite battery and electric vehicles (EV). Based on the gradient 
tree boosting ensemble method, profiles of the photovoltaic energy production were estimated, and 
the battery charging/discharging and EV charging was optimally manipulated by linear and mixed 
integer programming to minimize the annual cost of the purchased electricity. In their case study, the 
cost was reduced by 6%–36% depending on the photovoltaic capacity. 

In another previous research by Lee et al. [56], a metaheuristic algorithm was adopted to optimize the 
charging and discharging time and amount of sensible thermal energy storage system for minimizing 
the total operating cost. During the control phase, the usage temperature of the thermal energy 
storage tank and the energy consumption were predicted by artificial neural networks and the 
optimization solver referred to the predicted results in the estimation of cost-function. In their 
experimental validation, the AI-based control method showed operation cost savings of up to 14% 
compared to the classic rule-based control method. 

Also, Svetozarevic et al. [61] utilized a deep reinforcement learning algorithm to optimally control the 
EV battery system. By adopting the deep reinforcement learning algorithm in the controller, the valve 
opening of the water loop for the floor heating system and charging/discharging of the EV battery was 
optimized to minimize the electricity cost by maintaining indoor thermal comfort. In order to 
determine the optimal control variables, the room temperature and the state of the EV battery were 
predicted by recurrent neural networks and linear models constructed based on historical data. They 
compared the performance of the deep reinforcement learning control policy with the classic rule-
based control, and it was found that it could achieve 17% energy savings and 19% better comfort 
satisfaction on average. 

 

6.4.2 How storage increase building flexibility and resilience  

As stated in the previous section, energy storage technology contributes in balancing energy supply 
and demand. This contributes in increasing the resilience of buildings and districts during disruptive 
and hazardous events. A report from the IPCC defines resilience as “the ability of a system and its 
component parts to anticipate, absorb, accommodate, or recover from the effects of a hazardous 
event in a timely and efficient manner.”  [62]. Zhang et al. [63] further adapted this definition for 
evaluating building cooling strategies in the event of heatwaves and power outages, and defined four 
characteristics for resilient cooling, i.e., absorptive, adaptive, and restorative capacity and recovery 
speed. This outlines the different stages of how a resilient building performs, where it would maintain 
design conditions under extreme events (absorptive capacity), endure at minimum desirable 
conditions in more extreme events (adaptive capacity), and recover quickly in the event of a failure 
(restorative capacity, recovery speed). Thermal energy storage technology is expected to contribute 
to the absorptive capacity. Active control of energy storage (both thermal and electrical) enables the 
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system to be adaptive. The restorative capacity and recovery speed are technology-dependent.  

In the event of a heatwave, thermal storage such as building mass can help reduce the risk of indoor 
overheating, when coupled with discharging methods such as nighttime ventilation [64] or active 
water circulation [65]. Thermal storage at the source side and electrical storage can also help reduce 
the electricity use during a heatwave, when the electricity peak demands on the grid tend to increase 
[63], which could potentially result in a power outage. The use of predictive control with weather 
forecasts would enable buildings and storage systems to prepare for disruptions through efficient load 
management while maintaining indoor thermal conditions. When a power outage or grid failure occurs, 
thermal storage in the building mass will allow buildings to be habitable for a certain time before 
failure, especially if the thermal mass is activated (e.g., by water circulation prior to the power outage) 
[65]. Electrical storage will directly contribute to the resilience of buildings during a power outage or 
grid failure. An experimental case study conducted by Amada et al. [66] showed that a net-zero energy 
house with on-site photovoltaic panels and batteries was able to maintain thermal comfort in the 
summer of Japan with the partial operation of air conditioning units. In cases where the electrical 
storage is insufficient to operate active cooling systems for a building, the use of low power 
personalized cooling devices (e.g., fans) may be an option to make higher indoor temperatures 
acceptable for the occupants [67]. Existing studies suggest energy storage systems to be a resilient 
solution, but they are limited to classic, rule-based controls. Advanced control of such systems is worth 
investigating, e.g., predictive control in the context of heatwaves. 

 

6.5 Conclusions 

In the quest for a sustainable energy future, energy storage technology has emerged as a crucial 
component, playing a pivotal role in bridging the gap between fluctuating energy supply and demand. 
By effectively storing and reallocating thermal and electrical energy, this technology offers a promising 
solution to stabilize the power grid, enhance energy efficiency, and improve the resilience of buildings 
and districts during disruptive events. 

The utilization of energy storage technology extends across various scales, from large-scale power 
systems to individual buildings. At the system level, energy storage can mitigate the intermittency of 
renewable energy sources, such as solar and wind power, enabling a seamless integration of these 
clean energy sources into the grid. By storing excess energy generated during periods of high 
production and releasing it during peak demand periods, energy storage technology can smooth out 
the fluctuations in energy supply, ensuring a more stable and reliable power grid. 

On a smaller scale, energy storage systems can be implemented in buildings to optimize energy 
consumption and reduce reliance on the grid. By storing energy during off-peak hours and utilizing it 
during peak hours, buildings can significantly lower their electricity bills and contribute to overall grid 
stability. Additionally, energy storage systems can enhance the resilience of buildings during power 
outages, ensuring uninterrupted operation of critical systems and maintaining occupant comfort. 

The advent of artificial intelligence (AI) has revolutionized the field of energy storage technology, 
enabling more intelligent and efficient management of energy storage systems. AI-based control 
systems can effectively predict key influencing factors such as energy storage performance, 
meteorological parameters, and demand loads. This predictive capability allows for proactive 
optimization of energy storage operations, maximizing environmental and economic benefits while 
ensuring system stability. 
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AI-based control also plays a crucial role in enhancing the resilience of buildings and districts during 
disruptive events. By analyzing weather forecasts and predicting potential disruptions, these 
intelligent systems can enable buildings and storage systems to prepare through efficient load 
management strategies. During disruptions, AI can optimize energy use to maintain comfortable 
indoor temperatures and minimize the impact of power outages. 

In conclusion, energy storage technology, coupled with AI-based control, offers a transformative 
approach to sustainable energy management. By stabilizing the power grid, optimizing energy 
consumption, and enhancing resilience, this technology holds immense potential for shaping a cleaner, 
more sustainable, and resilient energy future. 

 

6.6 Nomenclature 

BITES  Building integrated Thermal Energy Storage 

HVAC  Heating, Ventilation and Air Conditioning 

MPC  Model predictive control  

TES  Thermal Energy Storage 
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7 Subtask E Cooperative Control of Building/District/Grid 

Contributors: Raffaele Carli, Mariagrazia Dotoli 

 

7.1 Introduction 

The energy sector is currently undergoing a significant transformation as governments worldwide 
strive to reduce greenhouse gas emissions and shift away from conventional fossil-based power 
generation to renewable energy sources (RESs) largely in the form of wind and solar [1, 2]. Even though 
power generation from RESs is more sustainable from an environmental point of view, the high 
penetration of these sources makes power systems less reliable due to their dependence on weather 
conditions. The intermittence of RESs requires an adequate reserve capacity to ensure the generation-
load balance, this is expensive and sometimes difficult [3, 4]. Additionally, power distribution networks, 
which were designed for unidirectional power flows and radial, or weakly meshed, operation [5], due 
to the intermittent RES generation, are now massively stressed by incessant net power load 
fluctuations, fast ramp and deramp events, and frequent reverse of power flow direction. 

The increasing impact of distributed energy resources (DERs), as well as controllable loads and electric 
vehicles (EVs) in power distribution networks, is further worsening these problems, and thus new 
solutions should be considered in the planning and operation of modern power systems. 

Traditional solutions, such as demand management controls and interconnection with other grids have 
been used to increase the flexibility of power networks. However, as penetration of RES increases, the 
employment of energy storage systems (ESSs) to counteract these problems and facilitate the full 
integration of RESs and DERs into power distribution grids, is unavoidable. Energy storage can support 
renewable energy by providing voltage support, smoothing power output fluctuations, balancing 
power flow in the network, matching supply and demand, and helping transmission and distribution 
companies (network operators and energy retailers) to meet demand reliably and sustainably [6, 7]. 
Indeed, ESS paired with both small and large-scale RES facilities has become a common practice in 
recent years, as prices of storage continue to decrease. ESSs are increasingly being embedded in power 
distribution networks to offer technical, economic, and environmental advantages [8]. These 
advantages include the above-mentioned power quality improvement, such as mitigation of voltage 
deviation, frequency regulation support, load shifting, load leveling, and peak shaving, facilitation of 
RESs integration, network expansion, and overall cost reduction and operating reserves [9, 10, 11] , 
with a great potential for applications at both utility and end-users level. Unfortunately, misusing or 
mislocating ESSs in distribution networks can degrade power quality and reduce reliability, affecting 
voltage and frequency regulation capabilities. Thus, careful planning and control of ESSs are critical for 
ensuring an efficient and effective integration into power networks. 

The interest in developing new technologies and control approaches for ESSs is increasing among 
researchers. To the best of the authors’ knowledge, several significant survey papers considering ESSs 
in power systems have been published in the last ten years. As described in Table 7.1, these papers 
provide a comprehensive overview of the state-of-the-art technologies and research on ESSs, with a 
focus on their applications in power distribution grids. 

A detailed description of different ESSs technologies and applications has been provided in survey 
papers [12, 13, 9, 14, 19, 22]. Most of these reviews papers focus on the use of ESSs to ensure the 
balance between RESs generation and demand improving the performance of whole power grid. For 
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instance, in [12] and [14] the authors analyze several energy storage technologies for wind power 
applications, while the importance of ESSs for large-scale integration of photovoltaics (PVs) is the focus 
of [10]. The main objectives of these articles are the introduction of the operating principles, as well 
as the presentation of the main characteristics of the different storage technologies suitable for these 
applications. Furthermore, in [13] different applications of ESS in power systems are presented 
together with the most relevant technologies. The paper puts the stress on the cooperation between 
the ESS and the RESs. 

A presentation of different energy storage technologies has been provided in [9]. In this paper, the 
technologies have been classified into thermal energy storage and electrical energy storage while a 
discussion on different energy storage utilities for RESs is presented. The analyses include their 
properties, current state in the industry, and feasibility for future installation. Additionally, in [7], a 
detailed description of different ESSs has been provided and the different technologies have been 
classified into five categories, namely, electrical, mechanical, electromechanical, thermochemical, 
chemical, and thermal. A comparative analysis of these different technologies along with the different 
applications is mentioned, and the suitable technology for each application is provided. Nevertheless, 
the challenges associated with each storage technology and the required optimization and control 
techniques were not described extensively. An exhaustive discussion on ESS sizing methods in the 
microgrid (MG) application is presented in [19]. The paper reviews the technologies, configurations, 
classifications, and features detailing the advantages and disadvantages of ESSs in MG applications. 
Lastly, in [22] ESSs have been divided into four major categories, mechanical, electromechanical, 
chemical, and thermal. A detailed structure and application of each category are described followed 
by future challenges. However, a detailed discussion of ESS sizing and optimization techniques along 
with system constraints is absent. 
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Table 7.1: List of related review articles: ✓and † indicate, respectively, major and minor contributions in the related research area. 

Ref Year Main research focus T1 T2 T3 T4 T5 T6 T7 T8 T9 
[12] 

 

[13] 

 

[9] 
 

[14] 
 

[15] 

 

[16] 

 

[17] 
 

[10] 

 

[18] 

 

[7] 
 

[19] 

 

[20] 

 

[21] 
 

[22] 
 

[23] 
 

[24] 

 

[25] 

2012 
 

2013 

 

2014 
 

2015 
 

2015 

 

2018 

 

2016 
 

2017 

 

2017 

 

2018 
 

2018 

 

2019 

 

2020 
 

2021 
 

2021 
 

2021 

 

2022 

The article deals with the review of several ESSs for wind power 
applications. 
The paper presents different applications of electrical energy 
storage technologies in power systems emphasizing on the 
collaboration of such entities with RESs 
The paper reviews the state of technology and installations of 
several energy storage technologies. 
The paper reviews the state of the art of ESS technologies for 
wind power integration support from different aspects. 
The paper discusses ESS options for some high-power 
applications, e.g., frequency regulation, voltage control, 
oscillation damping, and voltage ride-through. 
The paper presents an overview of the state of the art control 
strategies specifically designed to coordinate distributed ESSs 
in microgrids. 
The paper describes the modeling and formulation of a variety 
of deterministic techniques for energy storage devices. 
The paper presents a review on the emerging high 
penetration of PV with an overview on the importance of ESS 
for large-scale integration of PVs. 
The paper provides a review of ESSs management and 
optimization tools needed for efficient energy storage 
operation in power grids. 
The paper provides an overview of optimal ESS placement, 
sizing, and operation. 
The paper reviews the types of ESS technologies, and 
structures along with their configurations, classifications, 
features and evaluation process. 
In this paper, a literature review on optimal allocation and 
control of ESS is performed. Besides, different technologies 
and the benefits of the ESS are discussed. 
The paper discuss on ESS sizing methods. The comparative 
study, including advantages, limitations, and outcomes, is 
presented. 
The article highlights the ESSs applications along with the 
limitations of different technologies. 
The paper provides a review of battery ESSs concerning 
optimal sizing objectives and the system constraint. 
This paper provides a comprehensive review on shared ESS, 
in particular, the paper characterizes the design of shared 
ESSs and explain their potential and challenges. 
The article reviews several storage technologies and their 
modeling and applications in power grids for grid operation, 
markets, stability, and control. 
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Notes: T1: Storage technologies, T2: Placement, T3: Sizing, T4: Applications at the generation, T5: Applications at the transmission/distribution, T6: 
Applications at the end-user side (DSM, EVs), T7: Frameworks (Private, Common, etc.), T8: Strategies (PQ, Droop, Voltage frequency), T9: 

Architectures (centralized, distributed, etc.). 

 

To facilitate and improve the utilization of ESS, appropriate system design and operational strategies 
should be adopted. In fact, an unplanned and uncontrolled operation of ESS may impose a significant 
economic loss. An overview of the state-of the-art control strategies has been described in manuscripts 
[16, 17, 18, 23, 24]. In detail, paper [16] presents an overview of control strategies specifically designed 
to coordinate distributed ESSs in MGs. The paper reviews the range of distributed storage services and 
the control challenges they introduce. Moreover, the authors in [17] recall some of the most used 
control techniques for ESS such as PI, H-infinity, and sliding mode control, while describing the 
formulation of such techniques based on a generalized ESS model. Paper [18] provides a history of ESS 
in power grids and an overview of different system architectures while reporting a summary of the 
leading applications for ESSs. However, the work does not highlight the different storage technologies 
and the required control strategies. The scope of the paper [23] is to cover all the possible aspects of 
battery ESS sizing, including optimization objectives, constraints, algorithm development, applications 
and recommendation based on research gaps. Regardless of the abovementioned contributions, this 



 

 

 

ES TCP Final Report Task 37 165 

 

 

work does not include any other storage technology used for the operation of power distribution 
networks. Many studies have suggested sharing the storage capacity to further exploit the potential 
of ESSs. In this context, the authors in [24] provide a comprehensive review of the papers on shared 
energy storage. In this review, the design of the shared ESSs is considered together with a description 
of their potential and related challenges. 

It is evident from the literature review that the interest in ESSs has been growing in recent years. The 
above-listed papers show that a significant research effort has been spent in categorizing the different 
storage technologies and show their possible applications in power systems. These surveys have 
classified different energy storage technologies and highlighted their advantages and disadvantages. 
Some surveys have also emphasized the importance of ESSs in maintaining the balance between 
renewable energy generation and demand in power systems. However, it is also evident that there is 
a lack of focus on the system operation of ESSs. Few studies have analyzed the correlation between 
different storage technologies, grid applications, and relevant control techniques. Therefore, more 
research is needed to explore the operation of ESSs in power systems, especially in the context of their 
integration with RESs and of the provision of energy services to support network operation and control. 

This subtask presents a comprehensive review of the existing studies regarding ESS in power 
distribution networks. The contributions of this work can be summarized as follows: 

• This subtask discusses various issues related to the power quality of distribution networks and 

their mitigation scopes with ESSs. In detail, we present a systematic review of ESS studies 

published in journals or conference proceedings providing a comprehensive review of ESS 

integration in power distribution networks. 

• We approach the review of relevant ESS papers through multiple angles, including technological, 

design, and optimization aspects. Additionally, we provide a detailed classification of the papers 

based on various criteria, such as the type of ESS used, the control strategy employed, and the 

application area. Our review categorizes the control architectures for ESSs and explains the 

advantages and challenges of developing practical operational strategies and solution techniques 

for different ESS applications. 

• Differently from most of the recalled reviews, we show all the possible applications of ESS in power 

distribution grids such as frequency regulation, grid stability, voltage regulation, and ancillary 

services. Through the review, we identify the existing gaps in the literature and provide promising 

research directions to fill these gaps. We also highlight the correlation between articles 

considering all the possible ESS applications, recent advancements in storage technologies, and 

relevant control approaches available in the literature. 

• To the best of our knowledge, this study is one of the few review papers highlighting together the 

correlation of articles considering all the possible ESSs applications with the recent advancement 

of storage technologies and the relevant control approaches available in the literature. 

7.2 Research Methodology 

This section presents in detail the methodology used to select the most relevant works regarding the 
application of control and optimization methods to ensure secure, efficient, and resilient grid service 
through the use of ESSs. To classify and organize the research contributions available in the literature, 
we developed a taxonomy that comprehends various services that ESSs can provide to power grids. 
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The proposed taxonomy is based on previous work in [26] and is shown in Figure 7.1. It specifically 
considers the power grid perspective, with a focus on identifying the storage services that primarily 
benefit utility companies [27]. It is important to note that the taxonomy is not exhaustive and may not 
cover all possible services that ESSs can provide. However, it captures the bulk of the values generated 
by ESSs in power grids and provides a useful framework for categorizing the research contributions 
available in the literature. 

The next step involved searching for relevant research contributions related to each of the storage 
services in the taxonomy. It is worth noting that these services may have different names in various 
literature sources. Hence, to ensure comprehensive search coverage, we created a thesaurus, as 
shown in Table 7.2. This thesaurus allowed us to identify relevant contributions across a broad range 
of terms and keywords associated with each storage service. 

 

Table 7.2: Thesaurus of grid services provided by energy storage. 

Service Keywords 
Capacity or resource 
adequacy 

 

Energy arbitrage Spinning,
 NonSpinning, and 
Supplemental Reserves Voltage support 

 

Frequency response 

 

Black start service Congestion relief 

 

Infrastructure upgrade deferral 

Supply capacity; Capacity supply; Resource adequacy; 
Resource capacity; Reserve capacity; Capacity adequacy; Replacement Reserves. 
Energy time shift; Arbitrage; Energy market. 
Spinning reserve; Synchronized reserve; Non-spinning reserve; Non-synchronized reserve; Supplemental 
Reserve; Operating reserve; Replacement reserve 
Voltage support; Voltage control; Volt ampere reactive support; Volt ampere reactive control. 
Frequency response; Frequency regulation; Frequency containment; Frequency restoration; Virtual inertia; 
Inertia emulation; Synthetic inertia 
Black start; System restoration. 
Congestion relief; Congestion management; Congestion control; Congestion problem; Grid congestion; 
Network congestion; 
upgrade deferral; Grid Upgrade; Network upgrade. 

 

To standardize the research criteria while ensuring the inclusion of relevant papers, we utilized the 
widely recognized Scopus database with predetermined search parameters. Specifically, our focus was 
directed towards articles published from 2015 to the present in journals published by Elsevier and the 
Institute of Electrical and Electronics Engineers. The research query was defined to ensure the 
presence of the terms “storage” and “control” (or alternatively “management” or “operation”) within 
the title, abstract, or keywords of each paper. Additionally, we required that, for each storage service, 
at least one of the relevant keywords from Table 7.2 was found in the title, abstract, or paper keywords. 
During the search process, we opted for the “loose search” functionality offered by Scopus for the 
keywords enlisted in the thesaurus, while employing the “exact search” approach for the remaining 
part of the queries. The “loose phrase” option guaranteed the inclusion of the specified keywords 
while accounting for minor variations due to wildcards, lemmatization (including singular and plural 
forms), accented characters, synonymous terms, and punctuation. An example of a search string is 
TITLE-ABS-KEY((”Keyword 1” OR ... OR ”Keyword N”) AND ({control} OR {management} OR 
{operation}) AND {storage}) AND PUBYEAR > 2014 AND PUBLISHER({Institute of Electrical and 
Electronics Engineers Inc.} OR {Elsevier Ltd.}) AND DOCTYPE(ar). 

From the overall research, we obtained 2551 manuscripts, which have been categorized across the 
various services of the taxonomy. As is evident from the figure, a predominant proportion of the 
research contributions within the literature focus on Frequency and Voltage Regulation services. 
Although the initial search yielded a substantial quantity of articles, we undertook further steps to 
refine the selection process. We manually selected only those papers that strictly related to the 
services while disregarding any non-relevant papers that may have been included by mistake.3 

In addition to the initial search, the review process was extended to encompass other relevant journal 
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papers and conference proceedings related to the investigated topic. After analyzing the contents of 
all the obtained results, a total of 198 papers were deemed to be the most relevant and have been 
examined in the current report. 

 

Figure 7.1: Taxonomy of grid services provided by ESSs. 

7.3 Control of ESSs in power grids 

As outlined in the introduction section, the control of ESSs is critical for ensuring the stability and 
reliability of power grids. The implementation of effective control strategies becomes imperative to 
manage the charging and discharging of ESS units, thereby supporting grid parameters such as 
frequency, voltage, and power quality. However, the selection of appropriate control techniques 
exceeds mere consideration regarding the technology and applications as it necessitates a 
comprehensive assessment of system architecture and configuration. Indeed, in contrast to the 
conventional power system paradigm, characterized by centralized and private-owned plants 
responding to the system demand, the integration of ESSs, coupled with the evolving dynamics of 
power systems, has led to the proposition of various configurations and architectures. These 
innovative approaches should be taken into account when delving into the formulation of effective 
control strategies for ESSs. 

7.3.1 Hierarchy of control 

The control system of ESSs plays a critical role in carrying out essential functions, including maintaining 
frequency and voltage regulation, optimizing peak shaving, facilitating load shifting, and facilitating the 
integration of renewable energy sources [28]. A hierarchical framework can be employed to categorize 
the various functions of the control system according to their response time and significance in 
governing ESSs. Similar to conventional control schemes in power grids, the control levels for ESS can 
be organized in a hierarchical system, comprising primary, secondary, and tertiary levels [16]. 

7.3.1.1 Primary level 

The primary level, characterized by the shortest response time, plays a crucial role in delivering rapid 
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responses, including the regulation of grid frequency and voltage [29, 30]. Comparable to its 
counterpart in traditional power system control, the primary control system for ESSs for power grid 
support operates swiftly, even in the absence of communication. This level is often referred to as the 
zero level of control and is primarily utilized for active and reactive power control purposes [31]. 

7.3.1.2 Secondary level 

The secondary level is responsible for optimizing the performance of the ESS, such as ensuring that the 
ESS operates at peak efficiency while meeting the specified power requirements [28]. Variations in 
frequency or voltage need to be kept within the acceptable range to uphold grid stability. The 
secondary control of ESSs in a power grid system helps to achieve this by adjusting the power output 
of the ESS, rather than traditional generators [32]. 

7.3.1.3 Tertiary level 

At the highest level of control, the tertiary level encompasses long-term planning and optimization of 
power generation and distribution. Tertiary control in ESSs control considers factors such as demand 
forecasting, economic dispatch, energy market participation, and strategic decision-making [33]. 
Tertiary control goes beyond optimizing a single ESS and instead involves the coordination and 
optimization of multiple ESSs, alongside traditional power plants and renewable energy sources, in 
order to effectively meet the overall system requirements and objectives [34, 35]. 

7.3.2 Configuration frameworks 

With the growing number of participants in the energy market, an additional level of classification for 
the ESS control approaches can be based on their ownership. It’s important to note that ownership in 
this context doesn’t solely refer to the physical ownership of the storage device, but also encompasses 
the level of control independence of the device. In other words, it refers to the degree of interaction 
between the ESS and the control infrastructure. 

7.3.2.1 Private ownership 

The prevailing architecture for ESSs control is commonly known as local or private. In this framework, 
owners have full control of the device and are driven by their individual interests. The storage capacity 
in this setup is not intended for resource sharing but rather functions as an energy facility supporting 
the exchange of energy between end-users and the power grid or infrastructure itself. Examples of 
such end-user applications can be found in [36], [37] where households are equipped with individual 
ESSs to enhance their flexibility within a liberalized energy trading market. Nevertheless, due to the high 
investment and maintenance cost of the ESS, equipping each end-user with an ESS is most of the time 
not cost-efficient. Conversely, certain promising ESS technologies, specifically designed for grid 
applications, are implemented by power systems operators. Often the ownership of such devices lies 
with the operators themselves, as they utilize these devices to optimize the overall state of the grid. 
These ESS technologies are deployed to serve multiple users in the energy market, allowing the 
operators to enhance grid stability, improve power quality, and efficiently manage energy resources. 

7.3.2.2 Shared ownership 

The shared ESS architecture has emerged as a novel solution to overcome the limitations of the private 
framework. This approach addresses the cost inefficiencies associated with individual ESS ownership 
by introducing cost-sharing and benefiting from economies of scale. It is particularly well-suited for 
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large-scale ESS implementations designed to serve multiple users. One of the real-world applications 
of this structure is the so-called aggregated configuration in wind farms [38] where a single ESS is used 
to serve a group of turbines to smooth the generation variability instead of a single ESS for each turbine. 
Some other examples of this framework can be found in the community energy storage, in which a 
common ESS is installed to serve many households in an energy community [39, 40]. There are multiple 
strategies to operate the common ESS systems. One of these strategies is to first determine the 
capacity allocated to each user and then let the users operate their block of ESS independently. [41, 
42]. Another strategy involves an aggregator who assumes control over the entire system, coordinating 
capacity allocation and distributed energy distribution to effectively manage the shared ESS [43]. 

7.3.2.3 Market storage capacity 

The last configuration is the so-called market storage capacity. In this scenario, the storage device is 
either owned by a third-party independent operator who decides the price of the storage capacity 
and/or energy stored in the shared ESS for the users. Unlike the aggregator in the shared ESS 
framework, the independent operator invests in the ESS and provides storage services to end-users or 
to the power system operator. A typical application of this configuration is the utilization of a large-
scale ESS as a stand-alone operator, serving multiple users while optimizing options selling and energy 
trading in the market [44, 45]. The advantage of this approach is that the independent operator 
coordinates both capacity sharing and stored energy sharing for the operation of the shared ESS. 
However, determining the price of the capacity and energy trading is challenging. Additionally, if the 
independent ESS operator is a for-profit entity in the market, the design of the ESS sharing market 
should properly balance the conflict arising between the ESS operator and its clients. 

7.3.3 Control architectures 

The control of ESSs can be classified based on the coordination and communication perspective. These 
levels include centralized, decentralized and distributed (non)cooperative control, each with distinct 
characteristics as outlined in Table 7.3. Additionally, it is possible to combine these control schemes in 
a hybrid approach or integrate elements of autonomous and communication-based control. 

7.3.3.1 Centralized control systems 

In centralized control systems, the management of one or more ESSs by a single entity, such as a grid 
operator or a power management system. This scenario is common when private storage capacity is 
involved, where ESSs are privately owned and controlled by a single agent such as a user, prosumer, 
or system operator. The controller, whether operating locally or remotely, receives essential grid 
measurements, often through smart meters or remote terminal units. It then determines the control 
solution and communicates the set points back to the ESSs. However, when controlling a large number 
of ESSs in real-time this approach requires significant computational and communication resources 
and is sensitive to noise, communication delays, and single-point failures [46], as shown in Table 7.3. 
These limitations highlight the difficulties in coordinating a large number of ESSs efficiently and 
effectively within a centralized control framework and the necessity of different schemes. 

7.3.3.2 Distributed control systems 

On the other hand, in distributed control systems, ESSs are not controlled by a single entity, each ESS 
is controlled by an individual controller, referred to as an agent, which collaborates with other agents 
to reach a collective decision. This cooperation can be either cooperative or noncooperative, 
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depending on the goals set by the grid operator or end-users. Unlike centralized control, in a 
distributed approach, each controller only needs to communicate with its neighboring nodes, 
eliminating the need for global information about the entire state of the grid. The main objective of a 
distributed coordination structure is to establish a self-organized power grid that can effectively 
address challenges through local interactions, providing advantages such as “plug and play” capability 
and adaptability to system topology changes [47]. 

7.3.3.3 Decentralized control systems 

Decentralized control represents an intermediate approach between centralized and distributed 
control, where control is divided between centralized and distributed components in terms 
computational and communication burdens, control systems are shifting towards more distributed 
control architectures. Distributed and centralized control schemes offer enhanced reliability and 
adaptability, however, it is important to note that they require point-to-point communication, which 
can significantly increase computational requirements. 

As outlined in Table 7.3, both distributed and decentralized control schemes offer substantial 
advantages in terms of robustness and flexibility for managing ESSs in power networks. These 
approaches are well-suited to handle limited communication capabilities, low bandwidth, and are less 
susceptible to communication line faults. These qualities make them highly appealing for innovative 
applications. Indeed, with the increasing integration of renewable resources and the need to manage 
computational and communication burdens, control systems are shifting towards more distributed 
control architectures.  

Distributed and centralized control schemes offer enhanced reliability and adaptability, however, it is 
important to note that they require point-to-point communication, which can significantly increase 
computational requirements. 

7.3.3.4 Hybrid control systems 

Indeed, the classification of control schemes can be further expanded by considering the ownership of 
the storage in addition to the coordination approach as shown in Table 7.4. When an ESS is shared 
among multiple agents it can be controlled in a centralized manner by a single entity, often referred 
to as an aggregator or energy manager. Alternatively, the control of the shared ESS can be distributed 
among all the participating agents that collectively decide on the storage strategy, in a cooperative or 
noncooperative manner. 

Conversely, when ESSs are involved in selling their storage capacity to the market, the control is 
typically carried out by a single controller. However, in this scenario, the market dynamics and the 
interactions between multiple market participants play a significant role in shaping the control strategy. 
The controller, acting as a market participant, must consider factors such as price signals, demand-
supply dynamics, and market rules to determine the optimal utilization and trading of the ESS’s storage 
capacity. The nature of the market, with multiple participants and decentralized decision-making, can 
lead to a distributed or decentralized noncooperative scheme. This means that the controller’s 
strategy is influenced by the market conditions and the actions of other market participants, and the 
coordination of ESSs occurs through decentralized decision-making processes. 

7.3.4 Control tools for ESS 

This subsection explores different control techniques commonly used for controlling ESSs in power 
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grids. 

7.3.4.1 PID-based controller 

PID-based controllers are widely used as control strategies for ESS. A PID controller is designed to 
adjust the output of the ESS based on an error signal: 

𝑈(𝑠)

𝐸(𝑠)
=  𝐾𝑝 +

𝐾𝑖

𝑠
 +  𝐾𝑑 

where U(s) is the control signal, E(s) is the error signal. The proportional gain (Kp) regulates the control 
action in direct proportion to the error signal. The integral gain (Ki) integrates the error over time to 
eliminate steady-state errors and enhance control accuracy. Lastly, the derivative gain (Kd) considers 
the rate of change of the error, thereby improving the controller’s responsiveness and damping system 
oscillations. 

Based on the elements present in (1), we can differentiate the so-called Proportional (P), Proportional-
Integral (PI), and Proportional-Integral-Derivative (PID) controllers. Note that, this approach is often 
referred to as the droop control method (see Section 4). 

 

Table 7.3: Comparison between centralized, decentralized and distributed control of ESS. 

Features Centralized Decentralized Distributed 
DER ownership Single owner Multiple owners Multiple owners 

Goals A clear single task Uncertain tasks Uncertain and variable tasks 
Flexibility Less More High 

Plug-and-play Not possible Possible Possible 
System Extension Complex and Troublesome Easy Easy and less complex 

Communication and network need High Low Medium 
System Failure Single point fault Many point faults Many point faults 

 

 

Table 7.4: ESS configuration frameworks and architectures. 

 Centralized Distributed / Decentralized (coop- 
erative) 

Distributed / Decentralized (nonco- 
operative) 

Private storage capacity ESS owned privately by a single 
agent (user, prosumer, system 
operator etc.) and controlled 

locally 
ESS owned by several agents (user, 

prosumer, system operator etc.) 
and controlled by a single entity 
(aggregator, manager, controller) 

 

 
ESS owned by several agents (user, 

prosumer, system operator etc.) 
and controlled by all the agents 

that decide a strategy in a 
cooperative way 

 

 
ESS owned by several agents (user, 

prosumer, system operator etc.) 
and controlled by all the agents 

that decide a strategy in a 
noncooperative way 

ESS owned by a single agent (user, 
prosumer, system operator etc.) 
and the storage capacity on the 

market 

Shared storage capacity 

 
Marked storage capacity 

 

 

Figure 7.2: PI-based control for ESSs. 
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Figure 7.2 depicts a typical ESS with a PI controller scheme. This configuration consists of various 
components such as a dead band, a low-pass filter, and a storage input limiter. These components are 
designed to mitigate the effects of transients resulting from energy saturations in the ESS [48]. The 
parameters of the PI controller are commonly tuned using trial-and-error or pole-placement 
techniques. The simplicity of implementation and design, as well as the widespread utilization of this 
controller in industrial applications, are its main strengths. It is worth noting that the structure of the 
PI controller does not depend on the specific energy storage technology being employed. However, it 
has been demonstrated that system uncertainties and changes in the power system’s topology can 
significantly impact the performance of the PI controller and, consequently, the overall system 
behavior [49]. This highlights the necessity for the development of more sophisticated and robust 
controllers to address these challenges. 

7.3.4.2 Hysteresis Controller 

The hysteresis controller is a relatively simple technique used to control the error signal by comparing 
it with a reference signal. It offers several advantages, including fast and adaptive response to the 
inverter, ease of implementation, and more. Additionally, the hysteresis controller provides an 
inherent current protection scheme and helps reduce the total harmonic distortion (THD) of the 
system. The hysteresis controller is designed to maintain the current within a predetermined range by 
toggling the control action when the error signal exceeds specific thresholds. The hysteresis 
controller’s simplicity and adaptability make it a popular choice for certain applications where fast 
response and inherent protection are important factors. However, it’s worth noting that the hysteresis 
controller may introduce some level of switching noise due to the abrupt changes in the control action. 

7.3.4.3 H-infinity Controller 

The H-infinity controller is a robust control technique designed to address disturbances and stabilize a 
system with fast and responsive action. Its main objective is to eliminate or minimize the effect of 
disturbances on the system. The H-infinity controller achieves this by formulating the control problem 
as an optimization task and taking appropriate control actions to achieve robust performance in the 
presence of uncertain parameters and disturbances. H-infinity controllers offer the advantage of a less 
complex implementation despite their robustness and performance capabilities. 

7.3.4.4 Linear Quadratic Regulator 

The Linear Quadratic Regulator (LQR) method is a widely used technique for achieving stability of ESSs, 
even in the presence of uncertainties and transient conditions. One of the primary advantages of 
employing the LQR method is its inherent stability characteristics. By formulating the control problem 
as an optimization task, the LQR controller is designed to minimize a quadratic cost function while 
satisfying system constraints. However, there are a few limitations associated with the LQR method 
such as potential delay in decision-making and the lag in tracking accuracy during changes in the type 
of load. 

7.3.4.5 Fuzzy Controller 

The Fuzzy Controller is a logical controller that operates based on fuzzy logic principles, which allow 
for the handling of linguistic variables and eliminate the need for crisp values in decision-making 
processes. Fuzzy logic enables the representation of uncertainty and imprecise information by 
assigning membership degrees to different linguistic values within a defined range, typically ranging 
from 0 to 1. The fuzzy logic control strategy is given by: 
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 𝑢(𝑡) =  ∑ 𝑤𝑖

𝑛

𝑖=1

𝑢𝑖(𝑡) 

where wi is the degree of membership of the linguistic variable to the fuzzy set, and ui(t) is the control 
input associated with the fuzzy set. In the context of ESS stability, the fuzzy logic controller has gained 
popularity due to its high robustness and user-friendly nature. It has been extensively employed in ESS 
control applications. One of the key advantages of the fuzzy logic controller is its ability to make 
decisions based on imprecise or ambiguous information. By adjusting the fuzzy rules and membership 
functions, the controller can optimize its response to different operating conditions and achieve 
desired performance objectives. 

7.3.4.6 Sliding Mode Control 

Sliding Mode Control (SMC) is a robust and adaptive controller that is designed to handle variations in 
system parameters under different operating conditions. The key characteristic of SMC is the creation 
of a sliding surface, which represents a desired system behavior. The controller’s objective is to force 
the system’s state trajectory to follow this sliding surface, thereby achieving the desired system 
performance. One limitation of sliding mode control is its lack of adaptability to uncertain changes and 
the dynamic behavior of nonlinear systems. To address this limitation, the controller optimizes its 
parameters based on the output ripple waves, aiming to minimize the impact of uncertainties and 
achieve improved control performance. The sliding mode controller it suitable for ESS application as it 
is relatively easy to implement and it exhibits low sensitivity to changes in parameter values. 

7.3.4.7 Optimization-based methods 

Optimization-based methods play a crucial role in achieving optimal operating conditions in ESSs 
control. These techniques are employed in various decision-making tasks such as storage scheduling 
and operation, aiming to find the best solutions while considering constraints. Mixed Integer Linear 
Programming (MILP) is a commonly used optimization method in ESS control. MILP formulates 
optimization problems with a combination of linear and integer variables. As aforementioned, ESS 
controls are typically categorized into primary, secondary, and tertiary controls. Tertiary controls 
involve decisions related to energy management and power exchange between the utility and the ESS. 
Several software tools such as HOMER, HYBRID 2, RETSCREEN, and GAMS are available for modeling 
renewable energy systems in real-time or offline. These tools utilize optimization algorithms to find 
optimal solutions by considering a constrained set of inputs and maximizing or minimizing an objective 
function. However, solving optimization problems in real-time ESS control can be computationally 
expensive and complex. To address these challenges, heuristic algorithms and metaheuristic methods 
are utilized. Heuristic algorithms employ trial-and-error techniques to solve complex problems, while 
metaheuristic methods are inspired by natural processes. Particle Swarm Optimization (PSO) is an 
example of a metaheuristic algorithm inspired by the movement of fish and bird swarms. It iteratively 
searches for optimal solutions within a constrained space by solving an objective function. In cases 
where there are a large number of components to solve, genetic algorithms provide more efficient 
solutions. Genetic algorithms employ the concept of “survival of the fittest” to evolve and find optimal 
solutions in complex and large search spaces. Another optimization algorithm, Ant Colony 
Optimization (ACO), mimics the behavior of ants to find optimal solutions for objective functions under 
constraints. This algorithm has been successfully applied to minimize losses in distribution systems and 
has shown advantages over genetic algorithms in certain scenarios. 
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7.3.4.8 Model Predictive Control 

Model Predictive Control (MPC) is an advanced control strategy that utilizes a dynamic model of the 
ESS (and possibly of the power grid state) to predict its future behavior and solves an optimization 
problem to determine the control input that minimizes a predefined cost function, taking into account 
various constraints. The MPC control strategy is formulated as follows: 

  𝑢(𝑡) =   argmin
𝑢(𝑡)

𝐽(𝑥(𝑡), 𝑢(𝑡)) 

subject to: 

 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

and to: 

 𝑢(𝑡) ∈  𝒰,    𝑥(𝑡) ∈  𝒳 

In this formulation, u(t) represents the control input, x(t) represents the system state, and y(t) 
represents the system output. The cost function J(·) captures the desired objective of the control, while 
the dynamic model f (·) describes the system’s evolution over time. The control input u(t) is subject to 
constraints defined by the set U, and the state x(t) is subject to constraints defined by the set X. 

MPC aims to minimize the forecast error and achieve accurate tracking of the current parameter by 
considering future predictions of the system. One of the key advantages of MPC is its ability to handle 
various general and nonlinear constraints within the network, accommodating multiple inputs and 
outputs. 

7.3.4.9 Neural Networks 

A neural network-based controller is a data-driven approach that emulates the functioning of the 
human brain by processing input data through interconnected layers of nodes. It consists of an input 
layer, hidden layers with activation functions, and an output layer, where weights are adjusted to 
minimize the error or optimize a desired function. This closed-loop architecture allows information to 
flow between layers, enabling the neural network to learn and adapt to different operating conditions. 
The neural network controller offers adaptability, intelligence, and self-learning capabilities, making it 
suitable for ESS control. One of the key advantages of neural networks is their ability to process large 
amounts of data and extract meaningful patterns and relationships. This makes them suitable for 
capturing the complex dynamics and uncertainties present in power systems. By learning from 
historical data and real-time measurements, neural networks can make accurate predictions and 
control actions. 

7.4 Applications of energy storage systems in power 
distribution networks 

The use of ESS in power grids can range from large-scale applications of generation and transmission 
networks to reducing costs “behind the meter” to end users [50]. In this work, we employ a 
classification of ESS applications based on the one used in [50]. In particular, we divide the usage and 
benefits of the system into different categories hereafter described. 

7.4.1 Bulk energy services 

Bulk energy services refer to applications where ESSs are used for extended discharge or charge cycles, 
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typically lasting several hours or more. These applications leverage the capability of ESSs to provide a 
substantial amount of stored energy, enhancing the flexibility and performance of the overall system. 
In traditional generation systems, the sizing of power generation infrastructure is based on the 
forecasted peak demand, which often results in overcapacity and increased costs. Energy storage 
offers a solution to this challenge by providing additional supply capacity during peak demand periods 
[105, 106]. By storing excess energy during off-peak times and discharging it during peak periods, ESSs 
help meet demand without the need for installing high-capacity generation systems or purchasing 
additional capacity from the wholesale electricity marketplace. 

Furthermore, ESSs can play a crucial role in integrating renewable energy sources, such as solar and 
wind, into the grid [54][72]. These renewable sources are inherently intermittent, meaning their 
output fluctuates based on environmental conditions [107]. By storing excess energy generated from 
renewables during periods of high generation and releasing it when is low, ESSs mitigate intermittency 
and enhance grid stability. This capability not only improves the reliability of renewable energy supply 
but also reduces curtailment and maximizes the utilization of clean energy resources [108]. 

Renewable energy time shifting is closely related to energy arbitrage. Indeed, in electricity markets 
prices vary throughout the day, typically due to variable load patterns and RES generation. Energy 
arbitrage is a strategy that takes advantage of these price differences by purchasing (charging) 
electricity when prices are low and selling (discharging) it when prices are high [109]. ESSs enable 
energy arbitrage by storing bulk energy during low-price periods and utilizing it during peak demand 
to offset costs and achieve a more uniform load factor [110]. Although some losses occur during the 
charging and discharging processes, energy arbitrage can be profitable when the price differential is 
significant, such as during periods of abundant renewable generation [108]. It should be noted that 
energy arbitrage refers to wholesale buying and selling which is done by grid operators, end-users can 
use similar tactics, however, this is referred to as time-of-use bill management. 

There is an abundance of research on the use of storage for the application of ESS for bulk energy 
services. Several studies have demonstrated the effectiveness of rule-based control approaches which 
are characterized by their simplicity and ease of implementation. Rule-based control approaches, as 
demonstrated in the study by [52], rely on predefined rules that govern the operation of the ESS. These 
rules are typically based on factors such as electricity prices, demand forecasts, and the state of charge 
of the battery. For example, a common rule-based strategy involves charging the ESS when electricity 
prices are low and discharging it when prices are high. Such approaches have shown effectiveness in 
specific applications, such as price-based arbitrage, and can generate significant revenue by exploiting 
price differences [52]. Similar to rule-based, heuristic-based control approaches as exemplified in the 
study by [51], rely on empirical observations and rules of thumb to determine the charging and 
discharging actions of the battery. These approaches are relatively simple to implement and 
computationally efficient. For instance, a common heuristic is to charge the battery when electricity 
prices are below the average price observed over a certain time window and discharge it when prices 
are above the average price. Heuristic-based approaches have been effective in certain scenarios, such 
as managing the reserve capacity of electric vehicles (EVs) for power grid support [51]. Rule-based and 
heuristic approaches are typically deterministic and do not require complex modeling or extensive 
computational resources. Despite their simplicity, these approaches have limitations. They may not be 
optimal in dynamic and uncertain market conditions, as they do not adapt to changing conditions in 
real-time while these approaches also lack the ability to capture complex interactions between 
different variables. While rule-based and heuristic-based approaches offer simplicity and ease of 
implementation, advanced control approaches have emerged to address their limitations. Advanced 
control strategies involve mathematical models, optimization algorithms, and real-time adaptation. 
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These approaches, although more complex to implement, offer the ability to adapt to dynamic and 
uncertain market conditions, resulting in optimized control performance. They can capture complex 
interactions between variables and provide a comprehensive understanding of system dynamics [53]. 
However, advanced control approaches require computational resources and modeling efforts, 
leading to higher implementation costs compared to rule-based and heuristic-based approaches. 

The use of control methods in energy systems, such as PID (Proportional-Integral-Derivative) 
controllers and fuzzy controllers, has been extensively studied in the literature. These control methods 
aim to optimize the operation of ESS and improve the overall performance of the power grid. For 
instance, Liu et al. [51] proposed a day-ahead energy management and reserve declaration strategy 
for a parking lotbased ESS using electric vehicles (EVs) as a reserve resource. The strategy employed a 
PID controller to adjust the charging and discharging status of EVs based on the power fluctuation 
problem in the power grid. The results showed that the proposed strategy improved the operation 
profit of the parking lots by effectively utilizing the reserve capacity of EVs. Javadi et al. [54] presented 
a pool trading model within a local energy community that considered fuzzy control for home energy 
management systems (HEMSs) and other consumers. The fuzzy controller adjusted the energy 
consumption of the participants based on a price-based demand response program, aiming to 
minimize the overall bills of all participants while fulfilling their demands. The results demonstrated 
that the coordination among different end-users in the local energy community market led to cost 
reductions and increased revenues for active consumers. 
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Table 7.5: Bulk energy services: list of related articles. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[51]      ✓        ✓   ✓     ✓        

[52]   ✓           ✓   ✓        ✓     

[53]     ✓            ✓        ✓  ✓   

[54]  ✓                ✓    ✓        

[55]  ✓   ✓             ✓      ✓      

[56]  ✓                ✓       ✓     

[57]                   ✓   ✓        

[58]     ✓           ✓   ✓           

[59]      ✓        ✓ ✓       ✓   ✓    ✓ 
[60]     ✓           ✓      ✓   ✓     

[61]     ✓                 ✓   ✓  ✓   

[62]   ✓  ✓                 ✓   ✓     

[63]     ✓                 ✓   ✓     

[64]     ✓                 ✓   ✓     

[65]   ✓     ✓              ✓   ✓   ✓  

[66]  ✓  ✓     ✓    ✓         ✓   ✓     

[67]   ✓                   ✓   ✓    ✓ 
[68]   ✓ ✓                  ✓   ✓     

[69]   ✓                   ✓   ✓     

[70]                      ✓   ✓     

[71]          ✓    ✓        ✓     ✓   

[72] ✓  ✓     ✓        ✓      ✓        

[73]             ✓   ✓      ✓        

[74]     ✓ ✓                ✓      ✓  

[75]     ✓                 ✓     ✓   

[76]     ✓                 ✓      ✓  

[77]     ✓                 ✓       ✓ 
[78]   ✓  ✓                 ✓        

[79]     ✓                 ✓        

[80]     ✓                 ✓        

[81]     ✓                 ✓        

[82]     ✓                 ✓        

[83]     ✓                 ✓        

[84]     ✓                 ✓        

[85]     ✓                 ✓        

[86]      ✓                ✓     ✓ ✓  

[87]   ✓    ✓ ✓              ✓        

[88]   ✓    ✓               ✓        

[89]        ✓              ✓        

[90]    ✓     ✓             ✓      ✓  

[91]   ✓ ✓     ✓             ✓        

[92]  ✓ ✓                   ✓        

[93]   ✓ ✓                  ✓        

[94]   ✓                   ✓        

[95]   ✓            ✓        ✓  ✓     

[96]   ✓                     ✓ ✓     

[97] ✓ ✓ ✓                     ✓  ✓ ✓ ✓  

[98]                ✓        ✓      

[99]   ✓  ✓                   ✓      

[100]     ✓                   ✓      

[101]   ✓  ✓                    ✓     

[102]     ✓                     ✓    

[103]                          ✓  ✓ ✓ 
[104]   ✓                       ✓    

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 

 

While PID controllers and fuzzy controllers offer advantages in ESS control applications, they also have 
certain limitations. PID controllers are based on linear models and may not be suitable for systems 
with nonlinear dynamics. Fuzzy controllers, although capable of handling uncertainty, can be complex 
to design and require extensive tuning of linguistic variables and rules. 

In scenarios where market conditions are highly dynamic and uncertain, more advanced control 
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approaches may be more suitable. Model-based control approaches for ESSs have gained significant 
attention in recent years due to their ability to optimize ESS operation based on system dynamics and 
market data. Several studies have investigated the application of these approaches in various domains, 
such as electricity markets, microgrids, and renewable energy integration. Model-based approaches 
typically involve formulating the problem as an optimization problem and using mathematical 
algorithms to find the optimal solution. The cost savings from arbitrage can be estimated from market 
data using simple optimization techniques [111, 112] while control algorithms for arbitrage are 
typically based on optimal control approaches [96, 113]. 

One common characteristic of model-based control approaches is the utilization of mathematical 
models to optimize ESS operation. These models capture the relationships between system variables, 
such as energy prices, renewable energy generation, and load demand [98]. Several studies have also 
considered SoC and degradation variables [100]. For example, Zhang et al. [55] developed a MPC 
strategy for a battery energy storage station (BESS) in a grid with high photovoltaic power penetration. 
The MPC approach considered the impact of PV power on automatic generation control reserve 
capacity and aimed to minimize the equivalent operating cost of both the power grid and BESS. 

The use of optimization algorithms is another characteristic of model-based control approaches. These 
algorithms, such as dynamic programming [111] and mixed-integer programming [96], are employed 
to find the optimal control actions that maximize revenue or minimize operating costs. For instance, 
Xie et al. [96] proposed a robust MPC-based bidding strategy for wind-storage systems in real-time 
energy and regulation markets. The strategy optimized the bidding capacities of the wind storage 
system to increase revenue by absorbing low-cost energy in the energy market and selling it in the 
energy and regulation market. Optimal dispatching strategies considering multiple services of energy 
storage are addressed in [57], which aims to minimize long-term operation costs. The paper shows 
economic operation and power balance in an uncertain environment. Additionally, [59] focuses on 
controlling Plug-in Electric Vehicles (PEVs) integrated with microgrids and proposes a centralized 
framework for co-optimizing MGs with PEVs’ energy arbitrage. 

Optimization-based control approaches offer a systematic and rigorous framework for managing ESS 
in power grids. They aim to optimize various objectives, including energy arbitrage, frequency 
regulation, peak shaving, and renewable integration. These approaches leverage mathematical 
optimization techniques to determine optimal control strategies for ESS operation. 

Programming-based approaches, such as linear programming, mixed-integer programming, and 
convex optimization, have been widely employed in ESS control [66, 67]. For instance, in [85], a 
dynamic programming approach is proposed to optimize the use of battery storage for energy 
arbitrage and frequency regulation. The authors solve smaller subproblems at different time scales to 
handle the large state space and stochastic information. The advantage of programming-based 
approaches lies in their ability to handle complex optimization problems with well-defined objective 
functions and constraints. They provide reliable and efficient solutions but may suffer from 
computational complexity for large-scale systems. For instance, Liu et al. [51] propose an accessing 
guidance model for parking lots to alleviate congestion caused by electric vehicles (EVs) and present 
an energy management and reserve declaration strategy for parking lot operators. The study 
emphasizes the effective relief of congestion, enhanced reserve declaration capacity, and increased 
operation profit. Javadi et al. [54] introduce a pool trading model for a local energy community, 
demonstrating coordination among different end-users, reducing total electricity bills, and increasing 
revenues for active consumers. 

Ding et al. [57] address optimal dispatching strategies for user-side integrated energy systems 
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considering multiple services of energy storage. Their two-stage coordinated scheduling method 
minimizes long-term operation costs, incorporating time-of-use electricity price mechanism, demand 
management, response, energy arbitrage, and providing reserve capacity. Saffari et al. [59] focus on 
controlling plug-in electric vehicles integrated with microgrids, proposing a centralized framework for 
co-optimizing robust/stochastic optimization with energy arbitrage. The study demonstrates the 
effectiveness of the framework in dealing with uncertainties and achieving improved power system 
performance. Kazemi et al. [60] present a method for scheduling battery storage systems participating 
in frequency regulation and energy markets. Their approach models the regulation market’s automatic 
generation control signal through robust optimization and considers the impact on battery lifespan. 
The proposed linearized method ensures economic operation and prevents rapid depreciation. 
Mohsenian-Rad et al. [61] propose an optimization framework for coordinating the operation of large 
ESSs in nodal transmission-constrained energy markets, addressing various design factors and 
transforming the problem into a tractable mixed integer linear program. 

Mirzaei et al. [62] present a robust-stochastic framework for evaluating the effect of a battery-based 
energy storage transport system in a day-ahead market-clearing model. The framework integrates the 
market-clearing process with a train routing problem, allowing more flexible decisions based on risk 
levels. Arteaga et al. [63] develop models for estimating the potential profit of a battery storage system 
in competitive electricity markets, considering the impact on frequency regulation service and spinning 
reserve. 

Farahani et al. [64] propose a robust bidding strategy model for a Battery Energy Storage System (BESS) 
in a Joint Active and Reactive Power Market (JARPM). Their model aims to maximize the BESS owner’s 
profit while facing price uncertainty, guaranteeing suitable profit levels for private owners. Aldaadi et 
al. [65] investigate a coordinated bidding model for a combined system of wind plants and compressed 
air energy storage systems (CAES) in the energy market. Their approach utilizes a distributionally 
robust optimization (DRO) approach, achieving higher realized profits with less conservative results 
compared to robust optimization (RO). 

Pan et al. [66] propose an adaptive robust scheduling model for a hybrid energy generation system 
(HEGS) trading in both the day-ahead electricity and hydrogen markets. Their model maximizes total 
profits based on price arbitrage, considering the uncertainty of available photovoltaic (PV) power 
generation. Rezaei et al. [67] present a stochastic optimization framework for resilient operation 
scheduling of interconnected energy hubs (EHs) considering P2P energy trading and energy storage. 
Their framework reduces load shedding through P2P energy trading and increased energy ADMM-
based control approaches have gained attention in recent years due to their ability to handle large-
scale optimization problems with decentralized control. ADMM as a powerful optimization technique 
for distributed control problems. ADMM decomposes the optimization problem into smaller 
subproblems and solves them iteratively in a decentralized manner. This approach has been 
successfully applied in ESS control. For instance, [114] proposes an ADMM-based method for 
coordinating distributed ESS to minimize the overall operational cost. The ADMM framework allows 
for parallel computation and decentralized decision-making, which can enhance the scalability and 
robustness of the control system. However, the convergence of ADMM may be sensitive to problem-
specific parameters and requires careful tuning. 

Dynamic programming-based approaches offer a systematic approach to solving control problems by 
breaking them down into smaller subproblems. These approaches are particularly effective in 
scenarios with significant uncertainty and time-varying dynamics. In [68], a rolling stochastic 
optimization method is proposed for the coordinated operation of a wind farm and energy storage 
system. The method optimizes the bidding strategy of the wind farm and ESS union to maximize overall 
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profit. Dynamic programming enables a comprehensive consideration of system dynamics and 
uncertainties, leading to optimal control strategies. However, the curse of dimensionality limits the 
scalability of dynamic programming approaches for large-scale systems. 

The strengths of model-based control approaches lie in their ability to adapt to changing market 
conditions and capture complex system dynamics. These approaches can provide more sophisticated 
and flexible control strategies compared to rulebased approaches. They can consider uncertainties in 
renewable energy generation, load demand, and electricity prices, enabling optimized decision-
making in real-time. Additionally, model-based approaches can lead to improved revenue generation 
and cost savings compared to conventional methods. For example, Abdeltawab et al. [99] developed 
a model predictive control system for a hybrid wind-battery energy storage system, which aimed to 
achieve the maximum net profit from the electricity market. The proposed approach outperformed a 
conventional MPC in terms of economic profit. However, model-based control approaches also have 
limitations. One major challenge is obtaining accurate models of system dynamics and market data. 
The reliability and accuracy of these models greatly influence the performance of the control strategies. 
Furthermore, model-based approaches require computational resources and may have higher 
implementation complexity compared to rulebased approaches. The development and 
implementation of optimization algorithms and the integration of real-time data can pose technical 
and operational challenges [97]. 

Controlling ESS for bulk services poses a significant challenge due to the need for control actions lasting 
several hours or even days. This duration introduces uncertainties in system parameters, stemming 
from factors like fluctuating renewable energy generation, unpredictable electricity demand, and 
market price volatility. To tackle these uncertainties, researchers have proposed stochastic control 
frameworks incorporating probabilistic models or scenario-based methods. The literature extensively 
explores stochastic control approaches for ESSs in bulk energy services for the power grid. 

A common characteristic among the reviewed papers is the consideration of uncertainty in various 
aspects, such as energy prices, renewable energy generation, and system demand. Managing the 
stochastic nature of these variables effectively necessitates robust or stochastic optimization 
techniques. Some papers, including [59], [62], and [65], propose robust optimization models offering 
conservative solutions. Others, like [64] and [67], adopt stochastic optimization approaches to handle 
uncertainties and achieve higher profits. Stochastic control approaches for ESS in bulk energy services 
offer several advantages, including enhanced power grid reliability and stability, efficient utilization of 
renewable energy resources, and increased profitability for ESS owners. By actively managing ESS 
charge and discharge, these approaches effectively balance supply and demand, mitigate power 
fluctuations resulting from renewable energy sources, and provide ancillary services to the grid. 
Revenue generation through price arbitrage and capacity provision in energy and ancillary service 
markets is demonstrated in [65] and [64]. 

However, stochastic control approaches also face challenges and limitations. Solving stochastic 
optimization problems, particularly for large-scale systems, entails significant computational 
complexity. Specific optimization algorithms or decomposition techniques proposed in papers like [53] 
and [60] address this challenge. Another limitation is the reliance on accurate forecasts or historical 
data for stochastic models, which themselves may be subject to errors and uncertainties. The 
robustness and performance of control strategies are affected by this issue, as discussed in [62] and 
[65]. 

Recently, data-driven control approaches have gained interest as an alternative to model-based 
approaches, leveraging historical data and relevant variables for optimal control actions. Data-driven 
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control approaches are flexible and adaptable, as they can adjust to changing market conditions based 
on the available data. By analyzing historical data, these approaches can identify trends, patterns, and 
correlations that can inform the control actions for optimal performance. Machine learning techniques, 
such as neural networks, support vector machines, and ensemble methods, are commonly employed 
in data-driven control approaches to learn from the data and make predictions. 

One advantage of data-driven control approaches is their ability to handle complex systems where 
explicit mathematical models may be challenging to develop or inaccurate. They can capture nonlinear 
relationships and account for uncertainties in the system. Additionally, data-driven approaches can 
incorporate real-time data updates, allowing for continuous adaptation to changing conditions. 

The paper [97] proposes a predictive control model for storage-based renewable power plants, 
optimizing profit based on electricity price prediction and trading strategies. Additionally, [102] 
addresses accurate battery degradation cost estimation for energy arbitrage using a model-free deep 
reinforcement learning method. In another study, [103] presents an agent-based transactive energy 
trading platform for integrating ESSs into microgrids, utilizing a reinforcement learning algorithm to 
develop bidding strategies. Similarly, [104] develops a decision-making framework under uncertainty 
for a wind and storage power plant participating in day-ahead and reserve markets, employing a two-
stage convex stochastic model and data-driven approaches for generating forecasts and handling 
uncertainty. 

These papers exemplify the application of data-driven approaches in optimizing energy storage and 
trading strategies, considering factors such as degradation costs, market participation, and uncertainty 
management. However, it’s important to note that the quality and availability of historical data, as 
well as the selection of relevant variables, are critical for the effectiveness of data-driven approaches. 
Insufficient or biased data can lead to inaccurate predictions and suboptimal control actions. 
Furthermore, data-driven approaches may require significant computational resources for training and 
prediction, as they can be computationally intensive. 

7.4.2 Ancillary services 

The term ancillary services is used to refer to a variety of operations beyond generation and 
transmission that are required to maintain grid stability and security. These services generally include 
active power control or frequency control and reactive power control or voltage control, on various 
timescales. 

7.4.2.1 Frequency response 

The electrical grid transmits power from generators to consumers at a fixed frequency. In America, the 
frequency is generally 60 Hz, while in Europe and Asia, it is 50 Hz. When power generation matches 
power usage, the frequency remains stable. Frequency regulation is a method used to maintain the 
frequency within specific tolerance bounds to achieve a balance between generation and load. There 
are primary and secondary frequency responses, with the latter known as frequency regulation. 
Primary frequency response is an automatic and nearly instantaneous response by generators to 
frequency deviations. Frequency regulation serves as a secondary line of defense in balancing the grid, 
typically provided as a paid service in organized wholesale power markets. 

Frequency response services play a crucial role in operating power grids. In traditional power systems, 
synchronous generators supply grid inertia through the kinetic energy stored in their rotating mass 
and adjust their production setpoint to meet new requirements. However, these services need to 
adapt to the challenges posed by future power systems. With the increasing integration of renewable 
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energy sources (RESs) into the grid, supply variability and frequency fluctuations become more 
frequent and severe. Additionally, the growing use of power electronics interfaced RESs reduces the 
grid’s inertia, leading to increased frequency instability compared to traditional grids with synchronous 
generators. 

ESSs in frequency response services often employ purely proportional controllers, commonly known 
as droop-based control approaches. In this approach, the ESS adjusts its power output or 
charging/discharging rate in response to changes in grid frequency. P-f droop control is widely used in 
conventional and emerging frequency response services. It ensures that the active power output of 
the ESS is proportional to the frequency deviation, meaning that as the frequency decreases, the ESS 
output increases, and vice versa. The droop rate determines the degree of power response to 
frequency deviation. A control algorithm monitors the rate of change of load demand and adjusts the 
ESS power output accordingly. Various research works highlight the importance of droop-based 
control approaches for effective frequency regulation and stability enhancement in ESS.In this 
approach, the active power output of the ESS is proportional to the frequency deviation, meaning that 
as the frequency decreases, the ESS output increases, and vice versa. This relation is reported as 
follows: 

Δ𝑃𝐸𝑆𝑆 (𝑡) =  
1

𝑅𝐸𝑆𝑆
Δ𝑓(𝑡) 

where Δ𝑃𝐸𝑆𝑆 (𝑡) is the response of the device to the frequency variation Δ𝑓(𝑡). Note that different 
values for the droop rates RESS provide different degrees of power in response to the frequency 
deviation. The drop control method is typically implemented through a control algorithm that 
monitors the rate of change of load demand and adjusts the power output of the ESS accordingly. 

Several papers have explored the implementation and benefits of droop-based control approaches in 
ESS for frequency regulation and stability enhancement. For example, Charalambous et al. propose a 
coordinated voltage-frequency support strategy that incorporates droop-based frequency support and 
virtual inertia control [115]. Egido et al. test the application of ultracapacitors for frequency stability 
enhancement, incorporating droop control and inertia emulation in the frequency control algorithm 
[116]. These studies emphasize the significance of droop-based control approaches in effective 
frequency regulation and stability enhancement in ESS. 

Furthermore, the literature review includes papers investigating the use of different control 
techniques and technologies in frequency regulation. Examples include voltage and frequency 
regulation using wind turbine-photovoltaic-battery ESSs [117], cascaded pi-fractional order PID 
controllers for improving frequency response in hybrid microgrid systems [118], and real-time control 
of battery ESSs considering voltage-dependent capability of DCAC converters [119]. These works cover 
various aspects of frequency regulation, including optimal scheduling, control parameter optimization, 
and integration of different ESSs. 

Emulated inertia control is a controller that aims to mimic the behavior of traditional synchronous 
generators by providing virtual inertia to the system [120]. Virtual synchronous generators (VSG) and 
virtual inertia emulator (VIE) are commonly used techniques in emulated inertia control. VIE is a type 
of VSG that offers better frequency regulation by emulating the rotating mass inertia of synchronous 
machines. This controller can be easily implemented with a proportional strategy, the active power 
output is in proportion to the rate-of change-of-frequency (RoCoF) by implementing a swing equation, 
which effectively mitigates RoCoF. 

P-f droop control is simple and easy to implement, but it may not provide precise control and may 
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result in over or undercompensation of frequency deviations [121]. Conversely, triggered static 
response services are triggered at a certain frequency level instead of using a proportional droop. A 
constant power or discrete step of power is generated according to the frequency level. Static 
providers can be useful, especially during a large loss of generation, as they are fast-acting resources. 
However, the static response may not be as flexible as droop control in terms of adapting to dynamic 
changes in frequency deviations. A recent study [122], conducted a detailed techno-economic analysis 
of seven novel control strategies for ESS in frequency regulation comprehend drop-based and 
triggered static response control approaches. The analysis offers valuable insights and establishes the 
minimum total capital cost required for a positive net present value change under these control 
strategies. The findings demonstrate a range of economically viable configurations emphasizing the 
significance of selecting the appropriate control strategy for maximizing technical performance and 
financial viability. 

The above-mentioned control approaches are relatively simple and easy to implement, and they can 
provide fast and accurate frequency responses. However, they may not be optimal for capturing the 
full potential of ESS in frequency response service, as they do not consider other important factors 
such as state of charge (SOC) and system constraints. Advanced control approaches utilize more 
sophisticated techniques to optimize the performance of ESS in frequency response service. These 
approaches use mathematical models of the ESS, grid, and load and generation profiles to predict 
future grid conditions and optimize ESS power output or charging/discharging rate accordingly. 
Advanced control approaches can account for various factors such as SOC, grid frequency, grid stability, 
load and generation profiles, and system constraints, to provide optimal frequency response 
performance while ensuring the safe operation of ESS. However, these approaches may require more 
computational resources, system modeling, and real-time data, which can increase the complexity and 
cost of the ESS system [123]. 

Fuzzy logic-based techniques have been widely used to improve frequency stability and address the 
challenges associated with integrating renewable energy sources into power systems. These 
techniques utilize fuzzy logic controllers (FLCs) to design control strategies that adjust system 
parameters based on input signals and system conditions. One example is the virtual adaptive inertia 
control (VAIC) strategy, which uses fuzzy logic and virtual battery algorithms to design virtual inertia 
and droop parameters based on the states of energy storage battery packs (ESBPs) and bus voltage 
fluctuations. The VAIC strategy aims to distribute inertia and power during dynamic and steady periods, 
respectively, to enhance system stability [124]. Another approach is the fuzzy-based virtual 
synchronous generator (VSG) topology, which considers the energy level of the energy storage system. 
This technique incorporates a fuzzy logic controller to adjust VSG parameters based on the magnitude 
of perturbations while considering operational constraints. The fuzzy logic controller provides set 
points to an adaptive predictive controller, which, in turn, provides reference power commands to the 
energy storage system [125]. In addition to these examples, fuzzy logic-based control strategies have 
been proposed for frequency regulation in microgrids with high renewable penetration. These 
strategies utilize adaptive and fuzzy PI controllers, self-adaptive virtual inertia control using fuzzy logic, 
and intelligent control with recurrent probabilistic wavelet fuzzy neural networks [126, 127, 128]. 
Furthermore, fuzzy logic has been employed in the control of battery energy storage systems (BESSs) 
for frequency response. Hierarchical control structures have been proposed, where the aggregator 
layer receives information about the state of charge (SoC) of BESSs and sends commands to 
enable/disable the BESS control layer. The BESS controller adjusts the response of the BESSs based on 
the frequency deviations, prioritizing their actions according to their SoC levels [129]. 

Virtual inertia emulation (VIE) has also been integrated with MPC for frequency response service. A 
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study introduces a VIE-based controller that demonstrates robustness superior to an optimal 
Proportional-Integral (PI) controller, highlighting the effectiveness of MPC in VIE applications [130]. 
Another research work proposes an optimal coordination control strategy for a microgrid inverter and 
energy storage based on variable virtual inertia and damping. By dynamically configuring the virtual 
inertia and damping using linear quadratic optimal control, this strategy aims to improve the stability 
of the virtual synchronous generator (VSG), suppress oscillations of active power and frequency, and 
optimally configure the energy storage capacity of the VSG [131]. In a different context, a novel 
methodology for primary frequency response (PFR) in a microgrid is presented, combining Finite 
Control Set-Model Predictive Control (FCS-MPC) and droop control. The configuration involves a grid-
side converter (GSC), rotor-side converter (RSC), and a BESS. The FCS-MPC adjusts the droop gain value 
to continuously control the frequency imbalance and determine the power required from the BESS, 
allowing continuous operation at the maximum power point extraction and proportional power 
injection for frequency control [132]. Additionally, a manuscript proposes using virtual inertia 
emulator-based MPC for frequency regulation in renewable energy systems. The MPC approach, 
compared to Proportional (P) and Proportional-Integral (PI) controllers, aims to optimize control 
actions by predicting future system behaviors, contributing to reducing the carbon intensity of 
electricity production [133]. These studies demonstrate the utilization of MPC in conjunction with VIE 
techniques for enhanced frequency stability and control in various power system configurations. 

In addition to the previously mentioned control approaches, there are other emerging techniques that 
can contribute to system frequency regulation. For instance, proactive frequency control, achieved 
through predictive algorithms and advanced forecasting techniques, helps anticipate and mitigate 
frequency deviations, enhancing frequency stability and reducing the need for reactive control 
measures [134, 135]. Ali et al. (2021) propose a cascaded PI-FOPID controller optimized using the 
Gorilla Troops Optimizer (GTO) to improve the frequency response of hybrid microgrid systems, 
resulting in significant improvements in maximum overshoot/undershoot and settling time compared 
to other techniques [118]. Mohamed et al. (2022) address the coordination and enhancement of 
frequency stability in interconnected microgrid systems using a fractional order load frequency 
controller and a superconducting magnetic energy storage (SMES) virtual inertia system, optimized 
with the slime mold optimization algorithm (SMA) [136]. Hammad et al. (2019) propose an effective 
virtual inertia measure for transient stability in power systems with distributed ESSs, considering both 
synchronous generators and actuated ESSs [137]. 

The control techniques discussed above may not adequately address uncertainties and perturbations 
in the system, which can limit their robustness and performance under various conditions. Robust 
control techniques have been explored to overcome these limitations by considering system 
uncertainties, perturbations, and physical constraints. These techniques aim to ensure stability and 
performance across a wide range of dynamic systems. To address this challenge, researchers have 
proposed new approaches that incorporate robust control principles. For instance, a virtual inertia 
control based on an optimal robust controller has been introduced in [138] to enhance the frequency 
stability of modern power systems with renewables. The proposed robust control technique utilizes a 
coefficient diagram method (CDM) optimized by a metaheuristic algorithm called the chaotic crow 
search algorithm (CCSA). By incorporating chaotic behavior into the crow search algorithm, the 
proposed algorithm avoids suboptimal solutions and improves the convergence rate. These 
developments highlight the ongoing efforts to enhance the robustness and performance of control 
techniques in the presence of uncertainties and perturbations. By integrating robust control principles 
and considering system-specific factors, researchers aim to improve the stability and reliability of 
modern power systems, particularly those incorporating high levels of renewable energy sources and 
distributed energy resources. However, it should be noted that designing robust control structures 
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often relies heavily on the experience of the designer, which restricts their applicability in diverse 
scenarios [138]. 

Due to their smaller size compared to traditional generators, ESSs are often deployed in groups to 
provide frequency services. This necessitates effective coordination and control among the ESSs. 
Several control techniques have been proposed to address this challenge. 

Researchers have proposed distributed control strategies for multiple BESS to deliver fast frequency 
response in low-inertial power systems with high penetration of renewable energy sources. A novel 
distributed control algorithm has been designed to optimize the operation of multiple BESS units while 
considering frequency-related constraints and meeting the requirements of fast frequency response. 
The algorithm utilizes a consensus-based alternating direction method of multipliers (ADMM) to solve 
the optimization problem. The control strategy also incorporates a location-dependent term to 
account for the impact of BESS locations on the frequency response [139]. Another approach considers 
a distributed ESSs-based control paradigm for transient stability of power systems. Using a multi-agent 
control framework, an effective virtual inertia measure is derived, encompassing both traditional 
synchronous generators and actuated ESSs [137]. Furthermore, a hierarchical control approach has 
been proposed for the control of multiple BESSs to provide frequency response. This approach involves 
two decision layers: the aggregator layer and the BESS control layer. The aggregator layer receives the 
states of charge (SoC) of BESS units and sends commands to enable/disable the BESS control layer. The 
BESS controller prioritizes the response of BESS units based on their SoC levels, aiming to minimize the 
impact on the power system and end-users during the frequency response service [129]. 

Furthermore, electric vehicles (EVs) can also be utilized as energy storage for frequency response 
service [140]. EVs can act as grid frequency regulation resources or as storage/sources in the case of 
vehicle-to-grid (V2G) applications. However, the charging and discharging process of EV batteries can 
introduce complexities in the overall system’s frequency control. 

ESSs are increasingly being used instead of fossil fuel plants for this application as their flexibility and 
up-to-millisecond fast response times make them well-suited to compensate for rapid output 
fluctuations by RES increasingly integrated into modern power systems [141]. Nevertheless, BESSs are 
susceptible to degradation and reduced lifespan due to the high cycle rates of these applications. 

Hybrid energy storage systems (HESSs) are gaining popularity as an alternative to fossil fuel plants due 
to their flexibility and fast response times. HESSs, such as the combination of Flywheel Energy Storage 
Systems (FESSs) and BESSs, provide solutions to address the degradation and reduced lifespan of BESSs 
caused by high cycle rates. [30]. One common control approach for HESSs is the utilization of virtual 
synchronous generator (VSG) techniques. VSGs imitate the behavior of conventional synchronous 
generators and play a crucial role in maintaining frequency stability in microgrids and power systems 
with RES integration. The control parameters of VSGs strongly influence the frequency response of the 
system, and their design requires extensive analysis due to the interactions among different 
generation sources and loads. Particle swarm optimization (PSO) has been proposed as an effective 
method for designing optimal VSG parameters, considering multiple objective functions such as the 
integral time absolute error (ITAE) of frequency, frequency nadir, and rate of change of frequency 
(ROCOF) [142]. 

Additionally, HESSs combining supercapacitors (SCs) and batteries offer advantages for power 
management, with SCs handling fast-varying power and batteries compensating for longterm power 
fluctuations. These hybrid systems contribute to the stability and performance of virtual synchronous 
generators (VSGs) and can effectively mitigate power fluctuations caused by intermittent renewable 
energy sources [143]. Power management strategies that integrate fuzzy logic with dynamic filtering 
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methods have been proposed to optimize the operation of hybrid battery-SC systems, broadening the 
flexibility of filtering and minimizing battery degradation [144]. 

Furthermore, HESSs play a significant role in integrating renewable energy sources like wind power 
into the grid. The combination of adiabatic compressed air energy storage (ACAES) systems with wind 
farms (WFs) provides a solution for smoothing power fluctuations. Coordinated control frameworks 
and tri-level coordinated frequency control methods have been proposed in [145] to achieve 
frequency response and distribute frequency regulation powers among wind turbines and A-CAES 
units. These HESS-based solutions enhance system stability and improve frequency control during 
frequency events. 

Table 7.6: Frequency response: list of related articles PART 1. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[146]   ✓  ✓         ✓   ✓      ✓    ✓   

[147] ✓    ✓           ✓ ✓            ✓ 
[148]  ✓ ✓  ✓         ✓   ✓            ✓ 
[126]  ✓ ✓  ✓ ✓        ✓    ✓ ✓  ✓  ✓      ✓ 
[127] ✓                 ✓ ✓  ✓    ✓    ✓ 
[128]                ✓  ✓ ✓  ✓     ✓   ✓ 
[129]   ✓  ✓          ✓   ✓ ✓  ✓      ✓  ✓ 
[124]  ✓   ✓         ✓  ✓  ✓ ✓  ✓        ✓ 
[149]   ✓  ✓           ✓  ✓  ✓  ✓  ✓   ✓ ✓ ✓ 
[145] ✓  ✓    ✓ ✓      ✓ ✓ ✓  ✓  ✓       ✓ ✓ ✓ 
[117]  ✓ ✓  ✓           ✓  ✓  ✓       ✓  ✓ 
[118]  ✓ ✓               ✓   ✓  ✓  ✓    ✓ 
[150]  ✓ ✓ ✓   ✓  ✓         ✓    ✓       ✓ 
[119]     ✓             ✓    ✓       ✓ 
[151]                  ✓    ✓       ✓ 
[152]    ✓     ✓     ✓    ✓     ✓    ✓  ✓ 
[142]  ✓   ✓       ✓ ✓ ✓    ✓     ✓      ✓ 
[153]  ✓   ✓         ✓    ✓     ✓     ✓ ✓ 
[133] ✓    ✓       ✓  ✓    ✓      ✓     ✓ 
[132]   ✓  ✓         ✓    ✓      ✓     ✓ 
[154]                ✓  ✓       ✓ ✓  ✓ ✓ 
[155] ✓ ✓ ✓         ✓  ✓  ✓  ✓       ✓    ✓ 
[156]     ✓      ✓       ✓       ✓    ✓ 
[157]  ✓   ✓       ✓   ✓   ✓        ✓   ✓ 
[158]                  ✓        ✓    

[159]   ✓ ✓      ✓    ✓    ✓          ✓ ✓ 
[160]   ✓ ✓    ✓        ✓  ✓           ✓ 
[161]    ✓ ✓    ✓    ✓  ✓   ✓           ✓ 
[162]   ✓ ✓ ✓    ✓       ✓  ✓         ✓   

[163]  ✓   ✓           ✓  ✓           ✓ 
[164]  ✓ ✓  ✓           ✓  ✓           ✓ 
[165]  ✓   ✓  ✓       ✓    ✓           ✓ 
[166]     ✓       ✓  ✓    ✓           ✓ 
[167] ✓    ✓         ✓    ✓           ✓ 
[168]   ✓       ✓    ✓    ✓           ✓ 
[169]            ✓      ✓           ✓ 
[170] ✓  ✓        ✓   ✓    ✓           ✓ 
[171] ✓    ✓         ✓    ✓           ✓ 

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 
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Table 7.7: Frequency response: list of related articles PART 2. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[172]  ✓ ✓        ✓   ✓    ✓           ✓ 
[115]     ✓         ✓  ✓  ✓         ✓ ✓  

[173]   ✓  ✓         ✓    ✓          ✓  

[174]      ✓         ✓   ✓          ✓  

[175] ✓    ✓       ✓ ✓ ✓    ✓          ✓  

[176] ✓         ✓    ✓  ✓  ✓          ✓  

[28] ✓    ✓       ✓  ✓    ✓         ✓   

[177]     ✓           ✓  ✓         ✓   

[178] ✓    ✓         ✓    ✓         ✓   

[179]   ✓  ✓ ✓          ✓  ✓         ✓   

[180]   ✓  ✓         ✓    ✓         ✓   

[181]   ✓  ✓           ✓  ✓         ✓   

[182]     ✓             ✓            

[183]            ✓      ✓            

[184]   ✓  ✓ ✓            ✓            

[185]  ✓            ✓ ✓   ✓            

[186]     ✓        ✓ ✓ ✓   ✓            

[187]                  ✓            

[188]  ✓                ✓            

[189] ✓     ✓      ✓      ✓            

[190] ✓  ✓  ✓         ✓     ✓   ✓        

[125]   ✓       ✓    ✓     ✓    ✓ ✓      

[191] ✓    ✓         ✓     ✓     ✓     ✓ 
[192]   ✓  ✓              ✓      ✓     

[193]     ✓        ✓      ✓          ✓ 
[194]   ✓  ✓          ✓    ✓        ✓   

[195]     ✓       ✓ ✓ ✓     ✓           

[196]   ✓                ✓           

[197]  ✓ ✓                ✓           

[139] ✓    ✓           ✓    ✓  ✓  ✓      

[198]                    ✓          

[136]           ✓          ✓        ✓ 
[137]                ✓     ✓         

[199]                      ✓  ✓ ✓     

[200]   ✓  ✓          ✓ ✓      ✓  ✓      

[201]     ✓                 ✓        

[138]  ✓ ✓  ✓ ✓        ✓         ✓ ✓ ✓    ✓ 
[202]  ✓ ✓   ✓        ✓         ✓ ✓     ✓ 
[203]  ✓ ✓                    ✓      ✓ 
[204] ✓ ✓ ✓                    ✓      ✓ 
[205] ✓  ✓        ✓     ✓       ✓       

[206]    ✓     ✓               ✓      

[131]     ✓         ✓          ✓     ✓ 
[207]                        ✓      

[208]                        ✓      

[209]     ✓                   ✓      

[210]  ✓                       ✓    ✓ 
[211]  ✓ ✓  ✓         ✓           ✓    ✓ 

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 

 

7.4.2.2 Spinning, non-spinning, and supplemental reserves 

A crucial requirement for electrical utilities, or groups of electrical utilities, is to keep the power on 
even if a generator goes offline. The system as a whole must not experience excessive variation in 
frequency and power flow even if the largest of the system’s generators goes down. Traditionally, all 
generating assets in the system are deliberately run with a small percentage of reserve capacity, which 
adds inefficiencies, extra costs, and waste. However, fast-acting ESSs such as capacitors, flywheels, and 
batteries can be used instead for this application, allowing generators to be run closer to their rated 
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value. Reserve capacity is further split into spinning reserve (can respond within 10 seconds), 
supplemental reserve (can respond within 10 minutes), and backup supply (can respond within one 
hour). 

Spinning reserve services require rapid response capabilities to regulate the frequency to the desired 
level [223]. High energy ESSs are suitable for providing spinning reserve services due to their fast time 
response. Non-spinning reserve services involve reserve capacity that can respond within 10 minutes. 
The main control approaches for non-spinning reserves include PID control [160, 212], optimization-
based methods [213, 215, 214, 219, 51, 220, 218, 216, 217], and robust and stochastic control [213, 
215, 214, 212, 222]. Supplemental reserve services require reserve capacity that can respond within 
one hour. Electric vehicles (EVs) have been identified as a promising reserve resource for power grids 
to cope with power fluctuation problems [51]. 

 

Table 7.8: Spinning, non-spinning, and supplemental reserve: list of related articles. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[51]      ✓        ✓   ✓     ✓        

[212]     ✓           ✓  ✓ ✓  ✓  ✓  ✓    ✓ 
[160]   ✓ ✓    ✓        ✓  ✓           ✓ 
[213]  ✓ ✓    ✓       ✓        ✓  ✓ ✓     

[214]     ✓         ✓        ✓   ✓   ✓  

[215]     ✓         ✓        ✓   ✓     

[216] ✓   ✓          ✓        ✓        

[217]                ✓      ✓       ✓ 
[218]  ✓ ✓           ✓        ✓      ✓  

[219]  ✓ ✓   ✓        ✓        ✓        

[220]   ✓   ✓        ✓        ✓        

[221]   ✓ ✓   ✓  ✓     ✓         ✓       

[222]        ✓      ✓          ✓ ✓     

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 

 

7.4.2.3 Voltage Support 

In addition to frequency regulation, maintaining a stable voltage profile is a critical aspect of grid 
operation. Voltage stability ensures that power quality is preserved and end-user devices operate 
within their specified voltage limits. Voltage support, as an ancillary service, plays a crucial role in 
managing the reactance across the grid and mitigating voltage deviations. Historically, voltage support 
necessitated the addition or subtraction of reactive power-generating assets within the grid. However, 
challenges arose due to the limited transmission capability of reactive power over long distances. The 
emergence of ESS, especially distributed ones, offers a promising solution for voltage support due to 
their proximity to end-users and the capability to modulate both real and reactive power. 

The provision of voltage support through ESS involves various control approaches that govern the real 
and reactive power output of the energy storage units. The ability to provide reactive power is 
dependent on the characteristics of the inverter employed. 

The PID control strategy is a fundamental approach for voltage support. It employs proportional, 
integral, and derivative components to compute a control signal that adjusts the energy storage output 
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to maintain desired voltage levels. This control approach, commonly referred to as the droop method, 
adjusts the power output proportionally to the voltage deviation. Yuan et al. proposed a real-time 
control framework for BESSs based on the droop control approach [119]. This framework aimed to 
utilize the full capability of BESSs while considering the voltage-dependent capability curve of the DC-
AC converter and BESS security constraints. The control system formulated the power set-points using 
initial droop-based control and further optimized them through a nonconvex optimization process. 

MPC has gained traction for voltage support due to its ability to predict future system behavior and 
optimize control actions accordingly. Zhang et al. introduced a coordinated voltage and frequency 
control scheme for HVDC systems under pole-block fault using MPC [227]. This approach employed a 
two-layer controller structure with model predictive control and moving horizon estimation to 
calculate active and reactive power references for power sources. The simulation results validated the 
effectiveness of this scheme in achieving optimal voltage control and frequency regulation. 
Decentralized control strategies aim to distribute control actions across the network, enhancing 
system flexibility and response time. Kumar et al. proposed a decentralized inverter voltage control 
approach for solar PV and storage-based islanded microgrids [229]. This approach employed adaptive 
discrete proportional integral differential (ADPID) control, utilizing the peak value of the AC voltage 
signal as a reference. The performance of this adaptive scheme was shown to provide improved 
voltage stability compared to conventional PID and model reference adaptive control schemes. 

Some studies have focused on hybrid approaches that combine different control methods to achieve 
robust voltage regulation. Charalambous et al. introduced a coordinated voltage frequency support 
scheme for storage systems connected to distribution grids [115]. This scheme considered the 
reactance-to resistance ratio of the grid impedance and developed an adaptive gain to balance voltage 
and frequency support. Another study proposed a real-time coordinated control strategy for a grid-
voltage source converter (GVSC) and ESS in a DC distribution system [231]. This strategy utilized both 
proportional integral control in the GVSC and variable droop control in the ESS, optimizing power 
outputs based on voltage sensitivities. 
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Table 7.9: Voltage regulation: list of related articles. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[224]             ✓  ✓   ✓ ✓  ✓   ✓  ✓   ✓ 
[225]  ✓   ✓ ✓          ✓  ✓  ✓        ✓ ✓ 
[117]  ✓ ✓  ✓           ✓  ✓  ✓       ✓  ✓ 
[226]  ✓ ✓  ✓             ✓    ✓ ✓     ✓ ✓ 
[119]     ✓             ✓    ✓       ✓ 
[227]   ✓  ✓             ✓      ✓   ✓  ✓ 
[228]  ✓ ✓ ✓              ✓           ✓ 
[164]  ✓ ✓  ✓           ✓  ✓           ✓ 
[229]  ✓            ✓ ✓   ✓           ✓ 
[230]     ✓         ✓    ✓          ✓ ✓ 
[115]     ✓         ✓  ✓  ✓         ✓ ✓  

[231]                  ✓          ✓  

[232]     ✓           ✓  ✓          ✓  

[233]           ✓       ✓          ✓  

[180]   ✓  ✓         ✓    ✓         ✓   

[234]                ✓  ✓            

[235]                ✓  ✓            

[236]   ✓  ✓             ✓            

[237]     ✓ ✓             ✓   ✓ ✓     ✓  

[238]             ✓      ✓    ✓ ✓  ✓  ✓ ✓ 
[195]     ✓       ✓ ✓ ✓     ✓           

[239]   ✓                ✓           

[240]  ✓              ✓    ✓        ✓  

[241]  ✓   ✓           ✓    ✓        ✓  

[242]              ✓        ✓ ✓     ✓  

[243]      ✓          ✓      ✓ ✓     ✓  

[244]   ✓  ✓         ✓ ✓       ✓ ✓       

[245] ✓                     ✓  ✓ ✓   ✓  

[246]              ✓ ✓ ✓      ✓  ✓    ✓  

[247]  ✓   ✓           ✓      ✓   ✓     

[248]  ✓              ✓      ✓    ✓  ✓  

[249]     ✓         ✓        ✓       ✓ 
[250]  ✓   ✓                 ✓      ✓  

[251]  ✓            ✓        ✓      ✓  

[252]  ✓   ✓           ✓      ✓      ✓  

[253]     ✓         ✓ ✓ ✓       ✓     ✓  

[254]                       ✓     ✓  

[255]   ✓                    ✓     ✓  

[256]  ✓          ✓           ✓     ✓  

[257]  ✓   ✓        ✓          ✓     ✓  

[258]  ✓   ✓                  ✓    ✓   

[259]     ✓           ✓       ✓       

[260]  ✓            ✓ ✓ ✓        ✓     ✓ 
[261] ✓    ✓       ✓   ✓         ✓     ✓ 
[262]                        ✓    ✓  

[263]                ✓        ✓    ✓  

[264]  ✓   ✓         ✓ ✓ ✓        ✓    ✓  

[265]     ✓                   ✓   ✓   

[266]  ✓   ✓                   ✓      

[267]     ✓           ✓         ✓   ✓  

[268]  ✓   ✓                     ✓  ✓  

[269]              ✓ ✓ ✓          ✓  ✓  

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 

 

7.4.2.4 Black Start 

Power system restoration has been traditionally carried out by high-power generators connected to 
the transmission system [280]. When the grid is affected by a power outage, these socalled “Black 
Start” resources are used to turn it back on. However, due to the increasing share of renewable energy 
sources, traditional black start resources are fading. ESSs are ideally suited to substitute traditional 
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power generators for black start applications because they do not require a connection to the 
transmission system, which makes them more flexible and adaptable in a power outage scenario [280]. 

Most existing control strategies for ESSs are based on the traditional droop control strategy, which is 
widely used in power systems for voltage and frequency regulation [164]. For black start scenarios, 
several control approaches have been proposed that utilize droop, voltage, and current loops to 
regulate the network voltage and control the output current of the ESS [230]. 

Despite the effectiveness of droop control strategies, they have limitations in terms of stability and 
controllability during blackouts. To overcome these limitations, researchers have explored alternative 
approaches. For instance, Delghavi and Guerrero introduced a voltage control strategy based on 
fractionalorder sliding-mode control for islanded operation of distributed energy resource (DER) 
systems [270]. This strategy ensures black-start functionality, maintains output voltage quality, and 
protects the power-electronic interface against faults. Similarly, Yang et al. proposed a fractional-order 
sliding-mode control framework for system restoration under power grid faults [273]. 

Optimization-based approaches have also emerged as promising solutions for enhancing the stability 
and controllability of power systems during blackouts [278, 279, 276]. These approaches formulate 
optimization problems that minimize load shedding, reduce switching operations, and optimize the 
involvement of ESSs in power system restoration. They often employ mixed-integer linear 
programming (MILP) formulations to consider various control objectives and time-dependent load and 
generation profiles [278, 279]. In active distribution networks, a MILP-based service restoration 
method combines existing infrastructure and DERs to achieve optimal system restoration, considering 
switching operations, load shedding, and reactive power control [278]. 

Coordinating different energy resources and facilities through optimization approaches has also shown 
promise. Golshani et al. proposed a coordination strategy for wind farms and pumped-storage hydro 
units during power system restoration [34]. Their strategy utilizes a two-stage adaptive robust 
optimization problem to determine optimal operation sequences and modes for various resources. 

Real-time operation and control scheduling can be achieved through MPC. MPC methods have been 
applied to control ESSs during black start operations, focusing on enhancing PV utilization and 
maintaining optimal state of charge [272, 271]. 

To cope with uncertainties and unexpected events, stochastic optimization approaches have been 
employed [276, 277]. These approaches aim to provide robust and stable power system restoration by 
considering external disturbances, parameter uncertainties, and unmodeled dynamics. They have 
been successful in reducing PV power fluctuations, minimizing wind power curtailment, and achieving 
resilient distribution systems. Uncertainty plays a crucial role in power system restoration. Control 
approaches must be robust to external disturbances, parameter uncertainties, and unmodeled 
dynamics. Sliding-mode control and stochastic optimization-based approaches have shown promise in 
providing robust and stable power system restoration [277]. For example, Shuai et al. presented an 
approximate dynamic programming (ADP) based algorithm for realtime operation of microgrids under 
uncertainties [277]. In reference [277], a method is presented to reduce PV power fluctuations by 
employing hybrid ESSs through stochastic mixed-integer nonlinear programming. Additionally, in [34], 
a coordination strategy is proposed for wind farms and pumped-storage hydro (PSH) units to minimize 
wind power curtailment during the restoration process using a twostage adaptive robust optimization 
approach. 
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Table 7.10: Black start: list of related articles. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[270]              ✓  ✓  ✓   ✓        ✓ 
[271]   ✓  ✓     ✓     ✓   ✓    ✓  ✓   ✓ ✓ ✓ 
[272]  ✓   ✓         ✓    ✓    ✓  ✓     ✓ 
[230]     ✓         ✓    ✓          ✓ ✓ 
[273]     ✓       ✓    ✓     ✓        ✓ 
[34]   ✓ ✓     ✓       ✓      ✓ ✓  ✓  ✓   

[274]                ✓      ✓   ✓   ✓  

[275] ✓               ✓      ✓   ✓   ✓  

[276]        ✓        ✓      ✓      ✓ ✓ 
[277]     ✓                 ✓       ✓ 
[278] ✓             ✓  ✓      ✓      ✓  

[279]   ✓  ✓         ✓        ✓        

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 

7.4.2.5 Congestion relief 

The increased penetration of RESs is changing the landscape of modern power system. The 
intermittency of RES and its reversed power flows is leading to new regulation issues in both 
transmission and distribution networks. Addressing congestion in the power system requires a 
combination of measures, such as upgrading transmission infrastructure, improving energy 
management techniques, and developing energy storage solutions. ESSs have emerged as a promising 
solution to mitigate congestion and ensure the stability and reliability of the power grid. In recent years, 
various control approaches for ESS to handle congestion relief have been proposed and extensively 
studied in the literature. 

Optimization-based techniques have been proposed as effective methods to coordinate the operation 
of ESS units and alleviate congestion in distribution networks. For instance, In [286], the authors 
propose a flexible AC power flow control system based on the concept of flexible AC transmission 
systems for power distribution systems. The approach aims to optimize the use of RERs and BESSs to 
achieve congestion relief. Moreover, in [249], the authors propose a control framework for battery 
storage systems installed in the power grid to alleviate congestion problems caused by decentralized 
renewable generation. The proposed approach uses a linearized load flow model and a receding 
horizon charge path optimizer to accurately estimate voltage and overload problems in the grid and 
optimize the charging path of the battery storage system. The optimization problem is posed as a linear 
problem and solved using a linear programming (LP) solver. 

MPC has emerged as a popular control approach for managing ESS in the context of congestion relief 
in power systems. MPC takes into account real-time grid conditions and forecasted renewable energy 
generation to optimize the scheduling and dispatch of ESS, effectively addressing the intermittency of 
renewable energy sources (RES) and alleviating congestion. 

In [293], the authors propose a cooperative multi-area optimization strategy for transmission system 
operators (TSOs) to efficiently dispatch and redispatch energy in interconnected networks while 
reducing costs. They present a cooperative MPC algorithm that meets various requirements, such as 
convergence close to the global optimum, communication of state and input variables to all 
subsystems, adaptation of subsystem state towards the global optimum, inclusion of external 
generation costs in the objective function, satisfaction of model and input constraints, and lower 
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complexity of local optimization problems. Increasing integration of photovoltaic (PV) system in 
electric grids causes congestion during peak power feed-in. This issue is adressed in [292] with battery 
storage. The authors propose a MPC approach that aims to minimize battery degradation, grid 
congestion, and maximize self-consumption. They compare the performance of MPC and conventional 
maximizing self-consumption (MSC) control schemes and show that MPC achieves similar self-
consumption while reducing grid congestion and battery degradation. 

Furthermore in [282] the authors focuses on automatically clearing network congestion in power 
networks using a disturbance compensation-based MPC strategy. The MPC technique considers 
realistic constraints such as output and rate limits and active power balance. The proposed controller 
is validated on test systems and shown to have better performance compared to existing techniques, 
regulating line power flow within seconds by controlling synchronous generators and BESS. 

Optimization and MPC approach are usually proposed in conjuction to hierarchical schemes [84, 253]. 
These involve multiple levels of control, ranging from local ESS control to higher-level coordination and 
optimization. Local ESS control typically involves local energy management strategies, such as rule-
based control, where ESS charging and discharging decisions are made based on predefined rules. 
Higher-level coordination and optimization can be achieved through centralized or distributed control 
approaches, where ESS units communicate and coordinate with each other to optimize their 
operations and relieve congestion. In [84] the authors introduce a hierarchical control framework for 
the optimal coordination of distributed storage devices through Virtual Storage Plants (VSPs) to 
provide frequency regulation and congestion management in multi-area power networks. The 
proposed approach combines distributed optimization and consensus-based control. At a lower level, 
consensus-based control is designed to track power setpoints and maintain a balanced state-of-charge 
among storage units. This enables the modeling of VSPs at a higher level, where a distributed 
optimization approach is applied to achieve cross-regional coordination of multiple VSPs to deliver 
frequency support to interconnected power systems while avoiding congested power flows over tie 
lines. 

Power system operation faces an increasing level of uncertainties from renewable generation and 
demand, which may cause large-scale congestion under an ineffective operation. ESSs are typically 
operated by deterministic optimal models that do not consider uncertainties, and that uncertainties 
from flexible load, and renewable generation should be taken into account in ES operation to reduce 
system congestion effectively. There is a growing body of literature that focuses on uncertainty 
modeling for congestion relief with ESSs in power systems. Several studies have proposed different 
approaches and techniques to address the uncertainties associated with ESS operation for congestion 
management. There are two key methods for modeling power flows considering uncertainties: Monte-
Carlo simulation and probability theory. While Monte-Carlo simulation has been used in some research 
papers, it may not be applicable to large-scale systems. The authors also discuss two approaches for 
optimization with uncertainties: stochastic programming and robust optimization. Stochastic 
programming considers uncertainties as probabilistic distributions and solves for optimal solutions 
accordingly, while robust optimization considers uncertainties as bounded sets and aims to minimize 
worst-case scenarios. In [283] the authors applies energy storage (ES) to reduce system peak and the 
congestion by the robust optimization, considering the uncertainties from the ES state-of-charge (SoC), 
flexible load, and renewable energy. First, a deterministic operation model for the ES, as a benchmark, 
is designed to reduce the variance of the branch power flow based on the least-squares concept. Then, 
a robust model is built to optimize the ES operation with the uncertainties in the severest case from 
the load, renewable energy. 
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Table 7.11: Congestion relief services: list of related articles. 

Ref R1 R2 R3 R4 E1 E2 E3 E4 E5 E6 E7 E8 E9 A1 A2 A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 G1 G2 G3 
[281]               ✓ ✓    ✓  ✓      ✓  

[282]     ✓         ✓        ✓  ✓   ✓ ✓  

[283]  ✓   ✓         ✓        ✓   ✓     

[284]    ✓  ✓ ✓               ✓      ✓  

[285]    ✓     ✓             ✓     ✓   

[249]     ✓         ✓        ✓       ✓ 
[286] ✓ ✓   ✓         ✓  ✓      ✓     ✓ ✓  

[287]                ✓      ✓      ✓  

[288] ✓ ✓ ✓   ✓  ✓        ✓      ✓      ✓  

[289] ✓  ✓             ✓      ✓        

[290]  ✓  ✓     ✓              ✓     ✓  

[291]    ✓    ✓               ✓    ✓   

[253]     ✓         ✓ ✓ ✓       ✓     ✓  

[292]  ✓   ✓         ✓          ✓     ✓ 
[293] ✓              ✓ ✓        ✓   ✓   

 

Notes 

R1: Generic RES; R2: Photovoltaics; R3: Wind power; R4: Hydro power; E1: Battery energy storage systems ; E2: Electric vehicle V1G/V2G; E3: Thermal 
energy storage and heat pump water heaters; E4: Compressed-air energy storage; E5: Pumped storage hydropower (PSH) / PICO Hydro; E6: Flywheel ; 
E7: Superconducting magnetic; E8: Supercapacitors; E9: Hybrid energy storage system ; A1: Centralized; A2: Decentralized; A3: Distributed; C1: Rule 
based; C2: PID and droop control methods; C3: Fuzzy; C4: Consensus based; C5: Sliding Mode Control, Hysteresis, H-infinity, Feedback linearization 

control, Fractional Order Control Method; C6: Mathematical optimization; C7: Metaheuristic algorithms; C8: Optimal control, Linear Quadratic 
Regulator, Model predictive control; C9: Robust and stochastic approaches; C10: Machine learning based control; G1: Transmission; G2: Distribution; 

G3: Microgrid and islanded systems; 

7.5 Conclusion and future outlook 

The ongoing transformation within the energy sector is being driven by the pressing need to curtail 
greenhouse gas emissions, prompting governments across the globe to shift from conventional fossil-
fuel-based power generation to more environmentally sustainable alternatives. Within this context, 
this subtask has undertaken an exhaustive analysis of diverse control approaches applicable to ESSs in 
the context of power distribution grid services. Looking ahead, several key directions for further 
advancement in ESS control have been identified. The stochastic nature of renewable energy resources, 
along with load variability, necessitates optimization approaches that consider multiple cost functions 
and constraints. Developing fast-acting protection devices, particularly for stable microgrids during 
islanded operation, presents a challenge that requires attention. As power systems evolve towards 
smarter and more efficient grids, real-time control, mitigation, and protection mechanisms are 
imperative. Furthermore, the subtask emphasizes the importance of identifying vulnerabilities and 
implementing robust detection and mitigation plans to prevent monetary and proprietary losses. By 
addressing these aspects and leveraging tightly coupled and fast-processing communication systems, 
a more efficient and interactive power grid framework can be realized. To conclude, the exploration 
of control approaches for ESS in power distribution grid services is essential for enhancing power grid 
stability, efficiency, and reliability. While existing approaches have their merits and challenges, 
ongoing research and development are necessary to address the identified limitations and explore 
innovative solutions. By considering the stochastic nature of renewable resources, developing efficient 
protection mechanisms, ensuring real-time control and accounting for diverse constraints, the power 
grid can evolve into a more optimized and sustainable system. These advancements will facilitate the 
integration of ESS into modern power systems and contribute to a resilient and sustainable energy 
future. 
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