

1st webinar by IEA-ES Task 45:

Planning, Regulatory, Societal, and Financial Dimensions of Large-Scale Thermal Energy Storage Implementation

Tuesday, 10 June 2025 9:00 – 12:00 (CET)

Learn more at https://iea-es.org/task-45/

Workshop Program

Planning, Regulatory, Societal, and Financial Dimensions of Large-Scale Thermal Energy Storage Implementation

	Energy Storage Implementation
9:00 - 9:20	 Welcome, introduction and brief technical overview of Large Thermal Energy Storage technologies, based on IEA-ES Task 39. Romain Sucche, PlanEnergi
9:20 - 9:40	 Planning, Integration & Regulatory Framework, applied on a <u>Aquifer Thermal Energy Storage</u> case study. Bas Godschalk, DTESS BV
9:40 – 10:02	 Planning, Integration & Regulatory Framework, applied on a <u>Borehole Thermal Energy Storage</u> case study. Lukas Seib, Technische Universität Darmstadt
10:02 - 10:12	• Break
10:12 - 10:30	 Stakeholder engagement and public perception in an Large Thermal Energy Storage project. Michal Klauda, Fenix TNT
10:30 – 10:55	 Planning, Integration & Regulatory Framework, applied on a <u>Pit Thermal Energy Storage</u> case study. Per Alex Sørensen, PlanEnergi
10:55 - 11:15	The European Framework for Large Thermal Energy Storage project. Johanna Schickling, Hamburg Institut
11:15 – 11:25	• Break
11:25 - 11:45	Large Thermal Energy Storage financing methods. <i>Geoffroy Gauthier, PlanEnergi</i>

• Wrap-Up & Open Discussion. Geoffroy Gauthier & Romain Sucche, PlanEnergi

11:45 - 12:00

Submit your questions!

Submit your questions by filling up this form https://forms.office.com/e/3826HwsSUw

Questions will be considered:

- At the end of each webinar (if time permits)
- Or during the planned Q&A sessions

Introduction to IEA-ES Task 45

Goal of IEA-ES-Task 45

"Accelerating the uptake of Large Thermal Energy Storages"

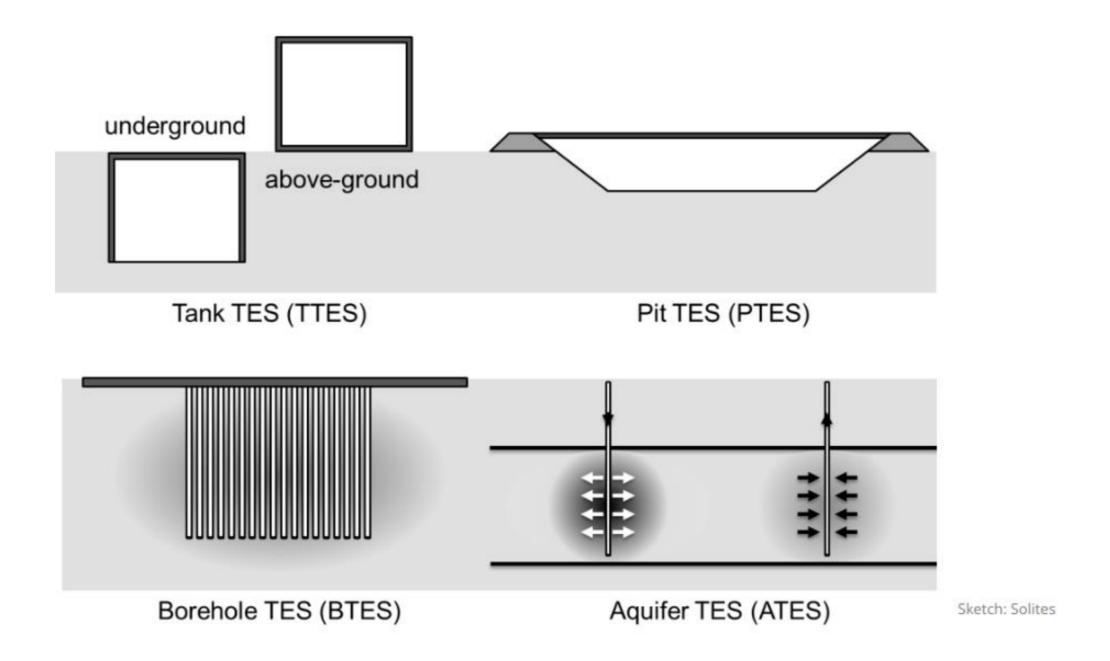
Task subtasks

1: Numerical Simulation

2: LTES Materials Database and Material Tests

3: Construction and Performance Test Standards

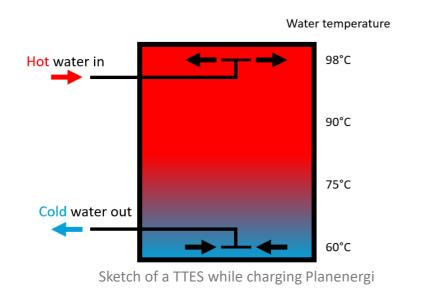
4: Improved Concepts and Dissemination

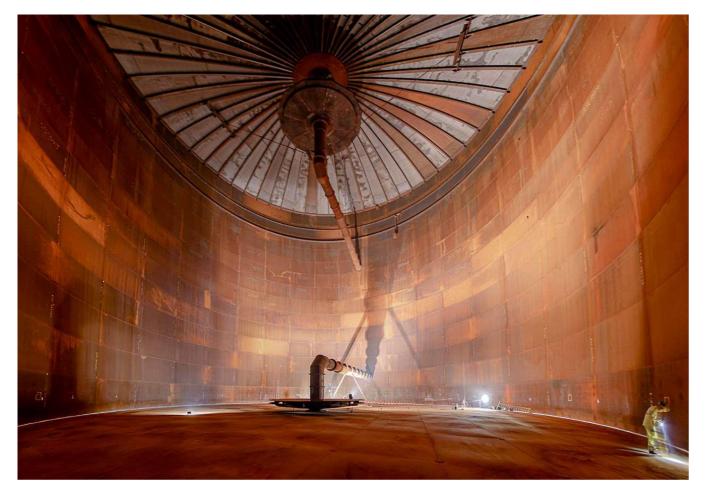

Download the IEA-ES Task 39 deliverables

Task scope: Investigation of the 4 main LTES technologies and improved concepts

- Yearly stored energy > 1 GWh
- Typical storage temperatures 100 °C − 120 °C
- Daily, weekly and seasonal storage
- DH or industries

Download the IEA-ES Task 39 deliverables





Tank Thermal Energy Storage (TTES)

- Large tank filled with water, usually in a cylindric shape, insulated at the top and to the sides
- Storage medium is water
- Most of the time placed above ground, although it can also be (fully or partially) underground

Technical Characteristics, TTES		
Size range, 1 tank [m³ water equivalent volume] 1'000 - 0		
Max thermal power [MW _{th}]	1 – 1'000	
Usage	Daily/weekly storage	
Maturity		
Number of implemented full-scale projects by 2022	> 100	
TRL	9	

Example: TTES in Berlin (DE) by Vattenfall

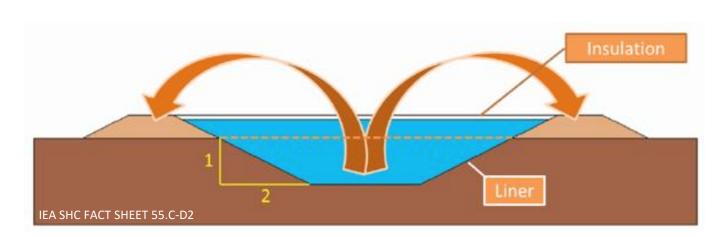

- Commissioned in 2023
- Water volume of 56'000 m³
- Ø 43 m x h 45 m
- 2'750 MWh storage capacity
- Charge-discharge capacity: up to 200 MW_{th}
- ~70-120 cycles of charge/discharge per year
- Max operational temperature: 98°C (atmospheric)

Photo: Vattenfall

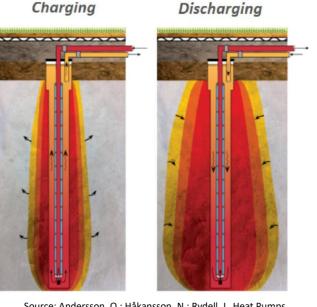
Pit Thermal Energy Storage (PTES)

- Pits dug in the ground, and thermally insulated at the top and sometimes on the sides as well
- Storage medium is usually water
- Reuse of the soil to build up the sides of the pit is important to minimize the costs of soil handling

Technical Characteristics, PTES		
Size range, 1 pit [m³ water equivalent volume]	20'000 – 1'000'000	
Max thermal power [MW _{th}]	10 – 1'000	
Usage	Daily/weekly or seasonal storage	
Maturity		
Number of implemented full-scale projects by 2022	7	
TRL	8-9	

Example: PTES in Dronninglund (DK)

- Commissioned in 2014
- Water volume of 60'000 m³
- Lid dimension: 91 m x 91 m
- Storage capacity: 5'000-5'500 MWh
- Charge-discharge capacity: 27 MW_{th}
- 2-2.5 cycles of charge/discharge per year
- Max operational temperature: 85-90°C (only summer)


Photo: PlanEnerg

Borehole Thermal Energy Storage (BTES)

- Thermal Energy Storage where the heat is stored directly in the ground
- Storage medium is soil or rock
- It is a series of boreholes where heat exchangers are inserted in order to transfer heat to the surrounding soil

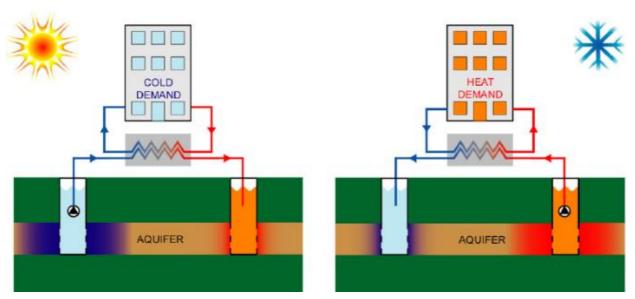
Technical Characteristics. BTES

The BTES lid is usually covered with soil after implementation

Size range [m³ water equivalent volume]	20'000 – 1'000'000
Max thermal power [MW _{th}]	2 - 50
Usage	Seasonnal storage
Maturity	
Number of implemented full-scale projects by 2022	4
TRL	8

<u>Source</u>: Andersson, O.; Håkansson, N.; Rydell, L. Heat Pumps Rescued Xylem's Heat Storage Facility in Emmaboda, Sweden.

Picture showing the piping and manifolds of some sections of the BTES in Emmaboda during installation in 2010


Example: BTES in Emmaboda (SE)

- Commissioned in 2010
- Boreholes configurations: 140 boreholes in a rectangular area to a depth of 150 m
- Underground volume: 336'000 m³
- Storage capacity: 3'800 MWh (for ΔT of 20°C)
- Storage temperature: 60-40°C (design), 40-20°C (actual)

Aquifer Thermal Energy Storage (ATES)

- Thermal Energy Storage where the heat is stored directly in an aquifer
- The storage medium is groundwater and soil/ground
- The basic system consist of a medium temperature well for "cold" water abstraction and a hot well for the injection of the charging heat

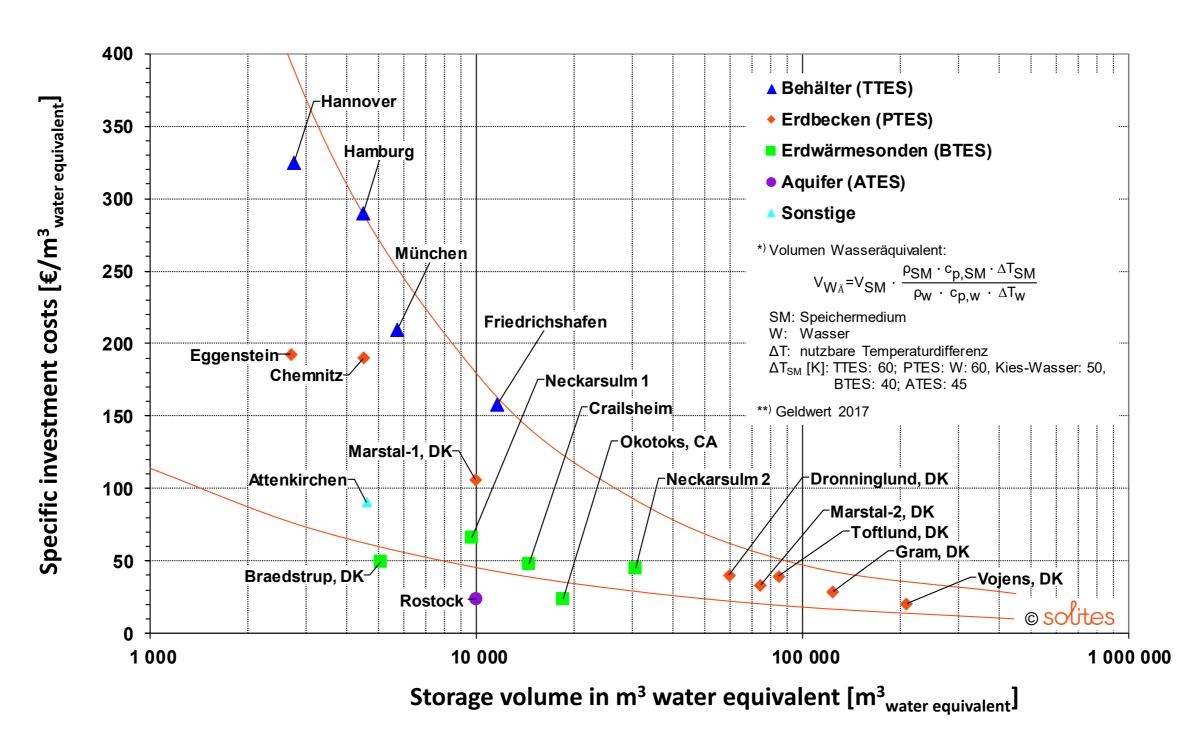
Technical Characteristics, HT-ATES			
Size range, 1 pair of wells [m³ yearly pumped water vol.]	250'000 - 800'000		
Max thermal power [MW _{th}]	5 - 20		
Usage	Seasonnal storage		
Maturity			
Number of implemented full-scale projects* by 2022	4		
TRL	8		

*1 of the HT-ATES projects is now decommissioned, and another is used as a geothermal heat source

• Cold well • Monitoring well • Hot well 85 °C

Top view presenting the location of the wells of the HT-ATES

Example: HT-ATES in Middenmeer (NL)


- Commissioned in 2021
- Main heat source: geothermal heat of 90 °C from 2'400 m
- Water volume of 440'000 m3
- Storage capacity of 28 GWh
- Charge-discharge capacity: 12-10 MWth
- 1 cycle of charge/discharge per year
- Max operational temperature: 90°C (infiltration temperature); 85-50 °C abstraction temperature

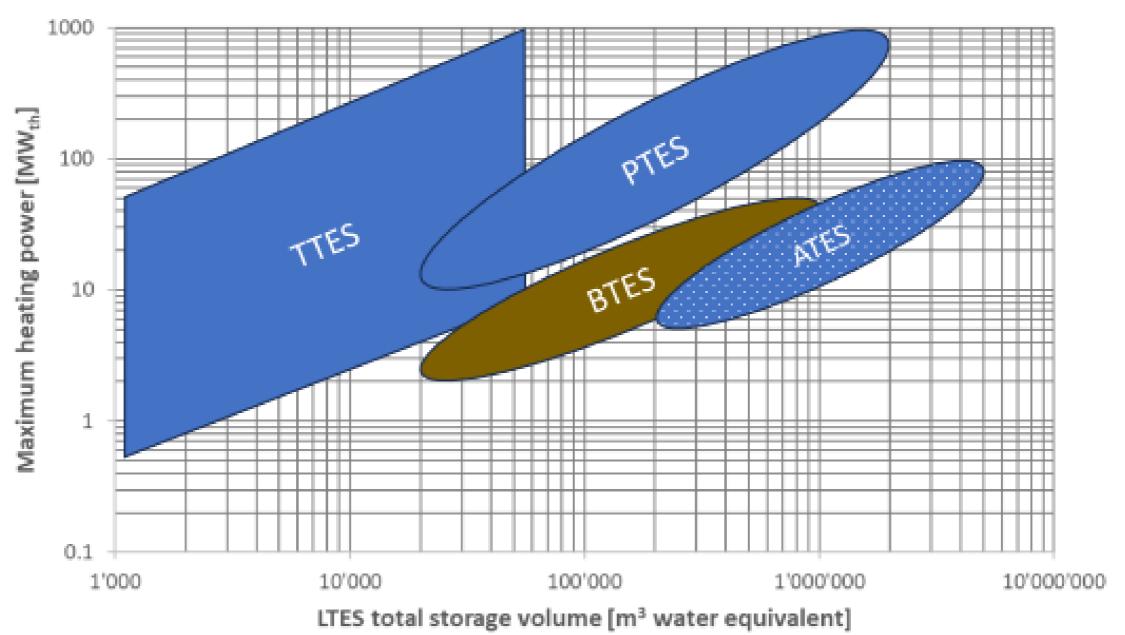
[&]quot;Groundwater as a heat source for geothermal heat pumps" Benno Drijver (IF Technology, Arnhem, The Netherlands) & Guus Willemsen

LTES benefit from economies of scale

- Lower cost per unit: Fixed and material costs spread over more energy stored
- Better thermal efficiency: Less heat loss due to lower surface area-to-volume ratio

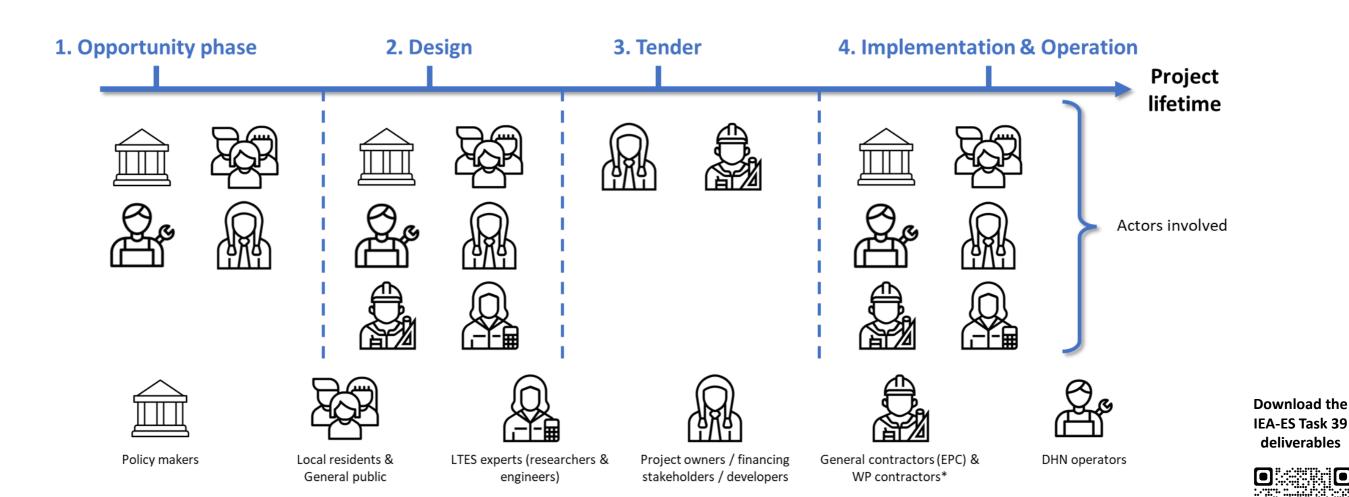
Download the **IEA-ES Task 39**

deliverables


Source: Epp, Bärbel. "Seasonal pit heat storage: Cost benchmark of 30 EUR/m³ Solarthermalworld.org" May 17th, 2019. https://www.solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3

LTES can be used to cover a wide range of application

- TTES offers a wide range of heating power but is limited in storage volume
- PTES provides both high power and large capacity for large-scale use
- BTES has moderate power but is highly scalable in volume
- ATES supports very high storage capacities but with lower heating power compared to PTES


IEA-ES Task 39 deliverables

LTES implementation takes place in 4 main phases

Phase	Opportunity	Design	Tender	Implementation
Key activities	Assess potential, involve stakeholders, pre-select LTES type	Analyze DHN data, run feasibility studies, define size and specs	Prepare technical specs, initiate tender, sign contracts	Build, operate, and maintain LTES under regulatory oversight

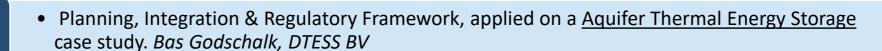
Thanks for your attention!

Romain Sucche

rsu@planenergi.dk

Learn more at https://iea-es.org/task-45/

Download the IEA-ES Task 39 deliverables



Break until 11:25

Planning, Regulatory, Societal, and Financial Dimensions of Large-Scale Thermal Energy Storage Implementation

9:00 - 9:20	 Welcome, introduction and brief technical overview of Large Thermal Energy Storage
	technologies, based on IEA-ES Task 39. Romain Sucche, PlanEnergi

10:02 - 10:12 • Break

9:20 - 9:40

• Stakeholder engagement and public perception in an Large Thermal Energy Storage project.

Michal Klauda, Fenix TNT

• Planning, Integration & Regulatory Framework, applied on a <u>Pit Thermal Energy Storage</u> case study. *Per Alex Sørensen, PlanEnergi*

11:15- 11:25 • Break

• The European Framework for Large Thermal Energy Storage project. *Johanna Schickling, Hamburg Institut*

11:40 - 11:50 • Large Thermal Energy Storage financing methods. *Geoffroy Gauthier, PlanEnergi*

• Wrap-Up & Open Discussion. *Geoffroy Gauthier & Romain Sucche, PlanEnergi*